Shijie Li | Embodied AI | Best Researcher Award

Dr. Shijie Li | Embodied AI | Best Researcher Award

Scientist | A*STAR Institute for Infocomm Research | Singapore

Dr. Shijie Li is a computer vision researcher with expertise in 3D perception, embodied AI, and vision-language models, contributing to the development of intelligent systems for real-world applications. He earned his Ph.D. in Computer Science from Bonn University under the supervision of Prof. Juergen Gall, following a master’s degree from Nankai University and a bachelor’s degree in Automation Engineering from the University of Electronic Science and Technology of China. His professional experience includes research positions and internships at A*STAR Singapore, Qualcomm AI Research in Amsterdam, Intel Labs in Munich, Alibaba DAMO Academy in China, and Technische Universität München in Germany, showcasing strong international collaborations and applied research expertise. His research interests lie in 3D scene understanding, motion forecasting, vision-language integration, semantic segmentation, and novel view synthesis. He has published in leading journals and conferences such as ICCV, CVPR, IEEE TPAMI, IEEE TNNLS, WACV, BMVC, ICRA, and IROS, reflecting impactful and consistent contributions. His academic excellence has been recognized through scholarships and awards including the Fortis Enterprise Scholarship, National Inspirational Scholarship, First Class Scholarship, and Outstanding Graduate Award. He has also served as a reviewer for top journals and conferences such as IEEE TPAMI, IJCV, CVPR, ICCV, ECCV, NeurIPS, and AAAI, reflecting his active role in the research community. His skills include deep learning, diffusion models, semantic and motion forecasting, vision-language modeling, and embodied AI, with a focus on interdisciplinary innovation. His research impact is reflected in 183 citations, 10 documents, and an h-index of 7.

Profiles: Google Scholar | Scopus | ORCID | LinkedIn

Featured Publications

Li, S., Abu Farha, Y., Liu, Y., Cheng, M., & Gall, J. (2023). MS-TCN++: Multi-stage temporal convolutional network for action segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(6), 6647–6658.

Chen, X., Li, S., Mersch, B., Wiesmann, L., Gall, J., Behley, J., & Stachniss, C. (2021). Moving object segmentation in 3D LiDAR data: A learning-based approach exploiting sequential data. IEEE Robotics and Automation Letters, 6(4), 6529–6536.

Qiu, Y., Liu, Y., Li, S., & Xu, J. (2020). MiniSeg: An extremely minimum network for efficient COVID-19 segmentation. Proceedings of the AAAI Conference on Artificial Intelligence, 34(11), 13180–13187.

Li, S., Chen, X., Liu, Y., Dai, D., Stachniss, C., & Gall, J. (2021). Multi-scale interaction for real-time LiDAR data segmentation on an embedded platform. IEEE Robotics and Automation Letters, 7(2), 738–745.

Li, S., Zhou, Y., Yi, J., & Gall, J. (2021). Spatial-temporal consistency network for low-latency trajectory forecasting. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 10737–10746.

Huaiqu Feng | Agricultural Robotics | Best Researcher Award

Dr. Huaiqu Feng | Agricultural Robotics | Best Researcher Award

Huaiqu Feng | Zhejiang University | China

Huaiqu Feng is a skilled researcher with expertise in robotics and electromechanical intelligent equipment, focusing on computer vision, deep learning, and image processing for agricultural automation. He holds a Master of Engineering in Agricultural Mechanization Engineering from Northeast Agricultural University and a Bachelor of Engineering in Automation from Hubei Normal University. Throughout his academic and professional career, he has participated in multiple research projects, including provincial science and technology programs and industrial transformation initiatives, demonstrating strong capability in applying AI and robotics to practical agricultural problems. He has contributed to several high-impact publications, patents, and software developments, showcasing his innovative approach and technical proficiency. His professional experience includes leading research teams, mentoring students, and managing projects that integrate advanced technologies into real-world applications. His research interests span robotics, precision agriculture, intelligent equipment, and AI-based image analysis. He is proficient in Matlab for algorithm development, microcontroller programming with STM32, and 3D modeling and simulation using Creo and Pro/E. Huaiqu Feng also actively engages in community and leadership roles through student organizations, innovation competitions, and volunteer initiatives, highlighting his commitment to fostering collaboration and advancing the research community. 426 Citations, 20 Documents, 8 h-index.

Profiles: Google Scholar | Scopus | ORCID

Featured Publications

  1. Quan, L., Feng, H., Lv, Y., Wang, Q., Zhang, C., Liu, J., & Yuan, Z. (2019). Maize seedling detection under different growth stages and complex field environments based on an improved Faster R–CNN. Biosystems Engineering, 184, 1-23.

  2. Zhao, G., Quan, L., Li, H., Feng, H., Li, S., Zhang, S., & Liu, R. (2021). Real-time recognition system of soybean seed full-surface defects based on deep learning. Computers and Electronics in Agriculture, 187, 106230.

  3. Li, D., Li, B., Long, S., Feng, H., Xi, T., Kang, S., & Wang, J. (2023). Rice seedling row detection based on morphological anchor points of rice stems. Biosystems Engineering, 226, 71-85.

  4. Wei, C., Li, H., Shi, J., Zhao, G., Feng, H., & Quan, L. (2022). Row anchor selection classification method for early-stage crop row-following. Computers and Electronics in Agriculture, 192, 106577.

  5. Li, D., Li, B., Long, S., Feng, H., Wang, Y., & Wang, J. (2023). Robust detection of headland boundary in paddy fields from continuous RGB-D images using hybrid deep neural networks. Computers and Electronics in Agriculture, 207, 107713.

Mr. Mohammad Hussein Amiri | Artificial Intelligence | Best Researcher Award

Mr. Mohammad Hussein Amiri | Artificial Intelligence | Best Researcher Award

Mohammad Hussein Amiri at Shahid Beheshti University, Iran

👨‍🎓 Profiles

Scopus

Orcid

An innovative data-driven AI approach for detecting and isolating faults in gas turbines at power plants

  • Authors: Mohammad Hussein Amiri, Nastaran Mehrabi Hashjin, Maryam Khanian Najafabadi, Amin Beheshti, Nima Khodadadi
    Journal: Expert Systems with Applications
    Year: 2025

Hippopotamus optimization algorithm: a novel nature-inspired optimization algorithm

  • Authors: Mohammad Hussein Amiri, Nastaran Mehrabi Hashjin, Montazeri, M., Mirjalili, S., Nima Khodadadi
    Journal: Scientific Reports
    Year: 2024

Monitoring UAV status and detecting insulator faults in transmission lines with a new classifier based on aggregation votes between neural networks by interval type-2 TSK fuzzy system

  • Authors: Mohammad Hussein Amiri, Mahdi Pourgholi, Nastaran Mehrabi Hashjin, Mohammadreza Kamali Ardakani
    Journal: Soft Computing
    Year: 2024

Novel hybrid classifier based on fuzzy type-III decision maker and ensemble deep learning model and improved chaos game optimization

  • Authors: Nastaran Mehrabi Hashjin, Mohammad Hussein Amiri, Ardashir Mohammadzadeh, Seyedali Mirjalili, Nima Khodadadi
    Journal: Cluster Computing
    Year: 2024

Monitoring UAV Status and Detecting Insulation Defects in Transmission Lines with a New Hybrid Classifier based on the Type-2 Fuzzy and Neural Networks

  • Authors: Mohammad Hussein Amiri, Mahdi Pourgholi, Nastaran Mehrabi Hashjin, Mohammadreza Kamali Ardakani
    Journal: Research Square
    Year: 2023