Xuewen Zhou | Machine Learning for Computer Vision | Young Scientist Award

Mr. Xuewen Zhou | Machine Learning for Computer Vision | Young Scientist Award

Master of Engineering | Hubei Normal University | China

Mr. Xuewen Zhou is a developing researcher in medical signal processing, medical image segmentation, and intelligent optimization algorithms, with growing contributions to the fields of biomedical engineering and computational intelligence. Affiliated with Hubei Normal University, his research focuses on designing advanced fractional-order and optimization-driven neural network models to enhance the analysis of physiological signals such as ECG and EEG as well as dermatological image segmentation. With 5 scientific publications, 4 citations, and an h-index of 1, Dr. Zhou is steadily establishing a strong academic presence.Dr. Zhou’s notable achievements include the publication of multiple SCI-indexed journal papers and active participation in leading international conferences. His recent SCI Q2 paper Adaptive Fractional Order Pulse Coupled Neural Networks with Multi-Scale Optimization for Skin Image Segmentation introduces an innovative segmentation framework integrating fractional order optimization with pulse coupled neural networks. The method employs a novel entropy–edge fitness function significantly improving accuracy in skin lesion delineation.Another key contribution is the SCI Q2 paper Improved Sparrow Search Based on Temporal Convolutional Network for ECG Classification where Dr. Zhou explores hybrid fractional order algorithms to optimize ECG recognition. His work rigorously analyzes the influence of positive and negative fractional orders on optimization stability offering valuable insights into next-generation fractional learning systems.In the EI indexed China Automation Congress Dr. Zhou proposed an ECG classification model combining spatial–channel attention networks with an improved RIME optimization algorithm enhancing hyperparameter tuning for complex biomedical patterns. He also contributed to neuromorphic computing through the ICNC  paper on FRMAdam iTransformer KAN presenting a fractional order momentum optimizer for EEG and ECG prediction.Dr. Zhou maintains strong collaborations with researchers including Jiejie Chen Ping Jiang Xinrui Zhang Zhiwei Xiao and Zhigang Zeng contributing to interdisciplinary advancements across medical AI fractional order theory and neural computation. His research demonstrates meaningful societal impact by improving early disease detection supporting intelligent diagnostic tools and advancing clinical decision making technologies on a global scale.

Profiles: Scopus | ORCID | ResearchGate

Featured Publications

1.Zhou, X., Chen, J., Jiang, P., Zhang, X., & Zeng, Z. (2026). Adaptive fractional-order pulse-coupled neural networks with multi-scale optimization for skin image segmentation. Biomedical Signal Processing and Control, (February 2026).

2.Zhou, X., Chen, J., Xiao, Z., Zhang, X., Jiang, P., & Zeng, Z. (2026). Improved sparrow search based on temporal convolutional network for ECG classification. Biomedical Signal Processing and Control, (February 2026).

3.Xiao, Z., Chen, J., Zhou, X., Wei, B., Jiang, P., & Zeng, Z. (2025). Monotonic convergence of adaptive Caputo fractional gradient descent for temporal convolutional networks. Neurocomputing, (December 2025).

4.Zhang, X., Chen, J., Zhou, X., & Jiang, P. (2024, December 13). FRMAdam-iTransformer KAN: A fractional order RMS momentum Adam optimized iTransformer with KAN for EEG and ECG prediction. In 2024 International Conference on Neuromorphic Computing (ICNC).

5.Zhou, X., Chen, J., Jiang, P., & Zhang, X. (2024, November 1). Electrocardiogram classification based on spatial-channel networks and optimization algorithms. In 2024 China Automation Congress (CAC).

Dr. Xuewen Zhou’s work advances science and society by developing fractional-order neural systems that significantly enhance the accuracy of biomedical signal and image analysis. His innovations support earlier disease detection, improved diagnostic reliability, and broader global access to intelligent healthcare technologies.

Şifa Gül Demiryürek | Generative Models for Computer Vision | Outstanding Scientist Award

Dr. Şifa Gül Demiryürek | Generative Models for Computer Vision | Outstanding Scientist Award

Lecturer | Aksaray University | Turkey

Dr. Şifa Gül Demiryürek is a researcher specializing in acoustics, dynamics, vibration control, nonlinear structures, and metamaterials, with a growing body of work that bridges fundamental mechanics and applied engineering. Her research focuses on low-frequency broadband vibration damping, nonlinear passive particle dampers, and metamaterial-inspired structures aimed at improving stability, efficiency, and durability in modern mechanical systems.She has authored 11 scientific documents, accumulating 19 citations with an h-index of 3, reflecting the emerging impact of her contributions. Her early work includes the experimental study of thermal-mixing phenomena in coaxial jets published in the Journal of Thermophysics and Heat Transfer demonstrating her multidisciplinary foundation in fluid–thermal interactions. Transitioning toward structural dynamics  her doctoral research at the University of Sheffield advanced the understanding of periodically arranged nonlinear particle dampers under low-amplitude excitation providing new insights into damping mechanisms critical for lightweight and high-performance structures.Dr. Demiryürek has collaborated with notable researchers such as A. Krynkin and J. Rongong contributing to recognized venues including DAGA, ACOUSTICS Proceedings, and the Institute of Acoustics. Her studies on metamaterial-based dampers and locally resonating structures highlight innovative strategies for vibration mitigation particularly in the low-frequency regime where traditional dampers are less effective. Her works further expand this direction with investigations on dynamic behavior of thermoplastics and material resonance considerations for wind turbine towers addressing contemporary engineering challenges related to sustainability and structural reliability.In addition to research publications she has contributed educational materials including Introduction to Metamaterials  supporting broader knowledge dissemination in emerging engineering domains. Her collaborations in applied mechanics such as the numerical evaluation of electric motorcycle chassis demonstrate a commitment to integrating theoretical advances into practical real-world applications.Through her focused work at the intersection of vibration engineering and metamaterial science Şifa Gül Demiryürek is contributing to next-generation solutions for safer quieter and more efficient mechanical systems with potential societal impact across manufacturing transportation renewable energy and advanced materials engineering.

Profiles: Googlescholar | Scopus | ORCID

Featured Publications

1.Demiryürek, S. G., Kok, B., Varol, Y., Ayhan, H., & Oztop, H. F. (2018). Experimental investigation of thermal-mixing phenomena of a coaxial jet with cylindrical obstacles. Journal of Thermophysics and Heat Transfer, 32(2), 273–283. Cited By: 5

2. Demiryürek, S. G. (2022). Periodically arranged nonlinear passive particle dampers under low-amplitude excitation (Doctoral research, University of Sheffield). Cited By: 3

3. Demiryürek, S. G., & Krynkin, A. (2021). Low-frequency broadband vibration damping using the nonlinear damper with metamaterial properties. In DAGA 2021 Conference Proceedings (pp. 94–96). Cited By: 3

4.Demiryürek, S. G., Krynkin, A., & Rongong, J. (2020). Modelling of nonlinear dampers under low-amplitude vibration. In ACOUSTICS 2020 Proceedings. Cited By: 3

5.Demiryürek, S. G., Krynkin, A., & Rongong, J. (2019). Non-linear metamaterial structures: Array of particle dampers. Universitätsbibliothek der RWTH Aachen. Cited By: 3

Dr. Şifa Gül Demiryürek’s research advances next-generation vibration damping and metamaterial technologies, enabling safer, quieter, and more efficient mechanical systems across industries. Her contributions support innovation in sustainable engineering from wind energy structures to lightweight transportation strengthening global efforts toward resilient, high-performance designs.

Varsha Singh | Deep Learning for Computer Vision | Best Researcher Award

Ms. Varsha Singh | Deep Learning for Computer Vision | Best Researcher Award

Research Scholar (Ph.D.) | National Institute of Technology | India

Ms. Varsha Singh is a dedicated researcher at the National Institute of Technology, Tiruchirappalli, specializing in deep learning, computer vision, and efficient image super-resolution architectures. Her research is centered on developing lightweight yet high-performing neural models that enhance perceptual image quality through advanced multi-scale feature extraction, attention mechanisms, and dense connectivity designs.Her notable contribution, Optimized and Deep Cross Dense Skip Connected Network for Single Image Super-Resolution (DCDSCN) published in SN Computer Science introduced a cross-dense skip-connected framework that effectively balances computational efficiency and reconstruction accuracy. The proposed Cross Dense-in-Dense Convolution Block (CDDCB) leverages multi-branch feature fusion and short-path gradient propagation, achieving superior PSNR and SSIM performance across benchmark datasets such as Set5, Set14, BSD100, and Urban100. Building on this foundation, her subsequent work Multi-Scale Attention Residual Convolution Neural Network for Single Image Super-Resolution (MSARCNN) published in Digital Signal Processing Elsevier  advances the field through the integration of Squeeze-and-Excitation and Pixel Attention modules within a multi-scale residual framework, enabling fine-grained texture recovery while maintaining low model complexity.With two international journal publications, Ms. Singh’s work demonstrates a strong emphasis on hierarchical feature fusion, adaptive attention modeling, and efficient neural design for real-time visual intelligence. She actively contributes to the scholarly community as a reviewer for the International Research Journal of Multidisciplinary Technovation (Scopus Indexed), where she has evaluated research papers in deep learning and image processing.Ms. Singh’s contributions bridge theoretical innovation and practical deployment, particularly in resource-constrained imaging and enhancement systems, fostering advancements in next-generation super-resolution and perceptual image restoration. Her research continues to strengthen the global discourse on AI-driven visual computing, supporting the development of intelligent and sustainable imaging solutions for diverse real-world applications.

Profiles: Google Scholar ResearchGate

Featured Publications

1.Singh, V., Vedhamuru, N., Malmathanraj, R., & Palanisamy, P. (2025). Multi-scale attention residual convolution neural network for single image super-resolution (MSARCNN). Digital Signal Processing, 146, 105614.

2.Singh, V., Vedhamuru, N., Malmathanraj, R., & Palanisamy, P. (2025). Optimized and deep cross dense skip connected network for single image super-resolution (DCDSCN). SN Computer Science, 6(5), 495.

Ms. Varsha Singh’s research advances efficient deep learning and image super-resolution, enabling high-quality visual reconstruction with minimal computational cost. Her innovations contribute to scientific progress in AI-driven imaging, with potential applications in medical diagnostics, remote sensing, and real-time visual enhancement, driving global innovation in sustainable and intelligent vision technologies.

Simy Baby | Applications of Computer Vision | Best Researcher Award

Mrs. Simy Baby | Applications of Computer Vision | Best Researcher Award

Researcher | National Institute of Technology | India

Mrs. Simy Baby is a pioneering researcher at the National Institute of Technology, Tiruchirappalli, with extensive expertise in machine learning, semantic communication, computer vision, and mmWave radar signal processing. Her research bridges the gap between radar sensing and intelligent communication frameworks, focusing on efficient feature extraction, complex-valued encoding, and task-oriented inference.Her seminal work, “Complex Chromatic Imaging for Enhanced Radar Face Recognition” (Computers and Electrical Engineering,  introduced a novel representation that preserves amplitude and phase information of mmWave radar signals, achieving an exceptional recognition accuracy. Another significant contribution, “Complex-Valued Linear Discriminant Analysis on mmWave Radar Face Signatures for Task-Oriented Semantic Communication” (IEEE Transactions on Cognitive Communications and Networking ), proposed a CLDA-based encoding framework enhancing feature interpretability and robustness under channel variations. Current investigations include Data Fusion Discriminant Analysis (DFDA) for multi-view activity recognition and Semantic Gaussian Process Regression (GPR) for vehicular pose estimation, highlighting her commitment to multitask semantic communication systems.Dr. Baby has 21 publications with 20 citations and an h-index of 3.  demonstrating a rapidly growing impact in her field. She is an active member of the Indian Society for Technical Education (ISTE) and contributes to the scientific community through innovative research that combines theory and practical applications. Her work on radar-based recognition, semantic feature transmission, and multi-task inference frameworks holds significant potential for intelligent transportation systems, human activity recognition, and bandwidth-efficient communication technologies.Through her research, Dr. Baby has established herself as a leading figure in advancing radar imaging and semantic communication, providing scalable solutions that merge high-performance computing with real-world societal applications. Her vision continues to shape the future of intelligent sensing and communication systems globally.

Profiles: Google Scholar | ORCID | Scopus 

Featured Publications

1. Ansal, K. A., Rajan, C. S., Ragamalika, C. S., & Baby, S. M. (2022). A CPW fed monopole antenna for UWB/Ku band applications. Materials Today: Proceedings, 51, 585–590. Cited By : 5

2. Ansal, K. A., Ragamalika, C. S., Rajan, C. S., & Baby, S. M. (2022). A novel ACS fed antenna with comb shaped radiating strip for triple band applications. Materials Today: Proceedings, 51, 332–338. Cited By : 4

3. Ansal, K. A., Kumar, A. S., & Baby, S. M. (2021). Comparative analysis of CPW fed antenna with different substrate material with varying thickness. Materials Today: Proceedings, 37, 257–264. Cited By : 4

4. Baby, S. M., & Gopi, E. S. (2025). Complex chromatic imaging for enhanced radar face recognition. Computers and Electrical Engineering, 123, 110198. Cited By : 3

5.Ansal, K. A., Shanmuganatham, T., Baby, S. M., & Joy, A. (2015). Slot coupled microstrip antenna for C and X band application. International Journal of Advanced Research Trends in Engineering and Technology.Cited By : 3

Dr. Simy M. Baby’s research advances the integration of semantic communication and computer vision, enabling high-accuracy radar-based recognition and task-oriented inference. Her work has significant implications for intelligent transportation, human activity monitoring, and bandwidth-efficient communication, driving innovation in both science and industry globally.

Osman Yildirim | Deep Learning | Best Researcher Award

Prof. Osman Yildirim | Deep Learning | Best Researcher Award

Head of the Department | Istanbul Aydın University | Turkey 

Prof. Osman Yildirim is a distinguished academic and researcher recognized for his contributions at the intersection of engineering, business, sustainability, and biomedical applications. He holds dual doctoral degrees in Engineering and Business Administration, a unique combination that has enabled him to approach research challenges with a strong interdisciplinary perspective. Over the course of his career, he has taken on significant academic leadership roles, including serving as Head of Department at Istanbul Aydin University, while also guiding doctoral students and fostering collaborative research projects. His professional experience spans teaching across engineering and business disciplines, coordinating research initiatives, and contributing to institutional development through mentorship and administrative leadership. His primary research interests focus on green transformation, sustainable supply chains, carbon policy impacts, energy management systems in universities, and AI-based medical imaging applications for improved diagnostics. These areas reflect his commitment to aligning research with both technological advancements and societal needs, particularly in the context of sustainable development and healthcare innovation. He has published widely in reputed Q1 and Q2 indexed journals such as Scopus and SCI, showcasing the impact of his work in both technical and applied fields. His achievements have been recognized through awards and honors that acknowledge his contributions to advancing interdisciplinary research and education. In addition, he has built valuable collaborations with international teams, integrating expertise from engineering, business, and medicine to deliver impactful solutions with global relevance. His research skills include expertise in machine learning, AI-driven image analysis, sustainable system design, and computational modeling for optimization under carbon constraints. These technical strengths, combined with his leadership and mentorship, position him as a leading scholar dedicated to advancing academic excellence and addressing global challenges through innovative and socially relevant research.

Profile: Google Scholar | Scopus Profile | ORCID Profile

Featured Publications

Ozturk, A. I., Yıldırım, O., İdman, E., & İdman, E. (2025). A comparative study of hybrid decision tree–deep learning models in the detection of intracranial arachnoid cysts. Neuroscience Informatics, 100234.

Ozturk, A. I., Yildirim, O., Kaygusuz, K., Idman, E., & Idman, E. (2025). Brain cyst detection using deep learning models. International Journal of Innovative Research and Scientific Studies, 8(5), 8974.

Borhan Elmi, M. M., & Yıldırım, O. (2025). Improve MPPT in organic photovoltaics with chaos-based nonlinear MPC. Balkan Journal of Electrical and Computer Engineering, 13(1), 1418574.

Ozturk, A. I., Yıldırım, O., & Deryahanoglu, O. (2025). A comprehensive strategy for the identification of arachnoid cysts in the brain utilizing image processing segmentation methods. International Journal of Innovative Technology and Exploring Engineering, 14(2), 1031.

Borhan Elmi, M. M., & Yıldırım, O. (2024). Improve LVRT capability of organic solar arrays by using chaos-based NMPC. International Journal of Energy Studies, 4(3), 1449558.

Yildirim, O., Khaustova, V. Y., & Ilyash, O. I. (2023). Reliability and validity adaptation of the hospital safety climate scale. The Problems of Economy, 4(1), 207–216.

Yildirim, O. (2023). Multidimensional and strategic outlook in digital business transformation: Human resource and management recommendations for performance improvement. In Book chapter.

Yildirim, O. (2023). Health professionals’ perspective in the context of social media, paranoia, and working autonomy during the COVID-19 pandemic period. Archives of Health Science Research, 10(1), 30–37.

Yildirim, O. (2023). The personified model for supply chain management. In Multidimensional and strategic outlook in digital business transformation: Human resource and management recommendations for performance improvement.

Yildirim, O., Ilyash, O. I., Khaustova, V. Y., & Celiksular, A. (2022). The effect of emotional intelligence and work-related strain on the employee’s organizational behavior factors. The Problems of Economy, 2(1), 124–131.

Yildirim, O. (2022). Investigation of the electrical conductivity of pernigranilin with carbon monoxide and nitrogen monoxide doping. Mathematical Statistician and Engineering Applications, 9(4).

Yildirim, O. (2022). Cyst segmentation using filtering technique in computed tomography abdominal kidney images. Mathematical Statistician and Engineering Applications, 9(4).

Yildirim, O. (2022). Design of flyback converter by obtaining the characteristics of polymer based R2R organic PV panels. International Journal of Renewable Energy Research, 12(4).

Avdullahi, A., & Yildirim, O. (2021). The mediating role of emotional stability between regulation of emotion and overwork. In Book chapter.

Tunç, P., Yıldırım, O., Göktepe, E. A., & Çapuk, S. (2021). Investigation of the relationship between personality, organizational identification and turnover in competitive flight model. TroyAcademy, 6(1), 894141.

Tunç, P., Yıldırım, O., Göktepe, E. A., & Çapuk, S. (2021). Investigation of the relationship between personality, organizational identification and turnover in competitive flight model. Çanakkale Onsekiz Mart Üniversitesi Uluslararası Sosyal Bilimler Dergisi, 4(1), 804959.

Puja Gupta | Computer Vision | Excellence in Research

Dr. Puja Gupta | Computer Vision | Excellence in Research

Asst Professor at Shri G.S. Institute of Technology & Science | India

Dr. Puja Gupta is a dedicated researcher and academic with expertise in artificial intelligence, machine learning, IoT, and smart computing technologies. She has contributed significantly to the field through her high-quality publications in reputed journals, patents, and innovative product development. Her work has addressed real-world challenges in healthcare, security, and sustainable technologies, bridging the gap between research and practical applications. With a strong academic foundation, she has successfully guided students in research and projects, fostering innovation and academic growth. She has been actively involved in international collaborations, research projects, and academic leadership roles, contributing to the advancement of her field. She is also a committed member of professional organizations, demonstrating her engagement in the broader research community. Her impactful contributions, leadership potential, and dedication to continuous professional development make her a valuable asset to both academia and society.

Professional Profile 

Google Scholar | Scopus Profile | ORCID Profile 

Education

Dr. Puja Gupta holds a strong academic background in computer science and engineering, culminating in a doctoral degree specializing in artificial intelligence and smart systems. Her Ph.D. research focused on the integration of machine learning techniques and IoT frameworks to design intelligent solutions that address complex societal problems. Prior to her doctoral studies, she earned her master’s and bachelor’s degrees in computer science, gaining a solid foundation in algorithms, data structures, and system design. Throughout her academic journey, she demonstrated exceptional commitment to learning, consistently achieving top ranks and recognition for her research contributions. Her advanced education has equipped her with in-depth knowledge of computational intelligence, optimization techniques, and applied research methodologies, enabling her to contribute effectively to both theoretical advancements and practical applications in the field. Her academic background continues to support her innovative research and teaching excellence in the areas of AI, IoT, and emerging technologies.

Professional Experience

Dr. Puja Gupta has extensive professional experience in both academic and research domains, with a focus on artificial intelligence, IoT, and smart computing solutions. She has worked as a faculty member at prestigious institutions, where she has taught and mentored students at undergraduate and postgraduate levels, guiding them in research projects and fostering innovation. Alongside teaching, she has been actively involved in funded research projects, many of which involved international collaborations and multidisciplinary teams. She has successfully published her findings in reputed journals and conferences indexed in IEEE and Scopus, and her work has also resulted in patents and prototypes with practical applications. Beyond academia, she has contributed to the research community by serving as a reviewer, participating in editorial activities, and organizing academic events. Her leadership roles in academic programs and community-driven initiatives further highlight her commitment to advancing knowledge and supporting the development of future researchers.

Research Interest

Dr. Puja Gupta’s research interests revolve around artificial intelligence, machine learning, IoT, big data analytics, and smart system design. She is particularly focused on developing intelligent solutions that address pressing societal challenges in areas such as healthcare, security, and sustainability. Her work often integrates computational intelligence with real-world applications, such as predictive healthcare models, smart monitoring systems, and secure communication frameworks for IoT devices. She is also keen on advancing research in explainable AI and optimization algorithms to ensure reliability and transparency in machine learning systems. Another area of interest is the development of resource-efficient AI models for deployment in edge and cloud environments. Her multidisciplinary approach allows her to collaborate across domains, leveraging data-driven techniques to innovate practical solutions. By combining theoretical knowledge with applied research, she aims to contribute to technological advancements that enhance the quality of life and create sustainable, impactful outcomes for society.

Award and Honor

Dr. Puja Gupta has been recognized with numerous awards and honors that highlight her academic excellence, research contributions, and leadership in the field of computer science and engineering. Her achievements include recognition for publishing impactful research in reputed journals, presenting at leading international conferences, and securing patents that demonstrate the practical value of her work. She has also been honored for her contributions to student mentoring and academic program development, reflecting her dedication to nurturing young talent. Several of her awards acknowledge her innovative approaches in AI and IoT research, particularly for developing solutions with direct societal impact. In addition, she has received appreciation for her involvement in community-driven initiatives and leadership in professional organizations. These honors not only recognize her past accomplishments but also serve as a testament to her commitment, perseverance, and ability to inspire others in the academic and research communities.

Research Skill

Dr. Puja Gupta possesses advanced research skills in artificial intelligence, machine learning, IoT systems, and computational modeling, enabling her to conduct impactful and interdisciplinary research. She is proficient in applying data analysis techniques, optimization algorithms, and predictive modeling to design intelligent solutions for real-world applications. Her expertise includes working with various programming languages, simulation tools, and research frameworks that support scalable and innovative problem-solving. She has developed strong skills in experimental design, result validation, and research dissemination through high-quality publications and conference presentations. Beyond technical expertise, she excels in collaborative research, often working with international teams and multidisciplinary groups to drive innovation. She is also skilled in project management, proposal writing, and securing research funding, which have been instrumental in the successful execution of her projects. Her research skills, combined with her commitment to continuous learning, position her as a versatile and resourceful academic and researcher in her field.

Publications Top Notes

Title: Impact of knowledge management practices on innovative capacity: A study of telecommunication sector
Authors: J Jyoti, P Gupta, S Kotwal
Year: 2011
Citation: 56

Title: A Novel Algorithm for Mask Detection and Recognizing Actions of Human
Authors: P Gupta, V Sharma, S Varma
Year: 2022
Citation: 48

Title: Transcriptional mechanisms underlying sensitization of peripheral sensory neurons by granulocyte-/granulocyte-macrophage colony stimulating factors
Authors: KK Bali, V Venkataramani, VP Satagopam, P Gupta, R Schneider, …
Year: 2013
Citation: 42

Title: Minimally invasive plate osteosynthesis (MIPO) for proximal and distal fractures of the tibia: a biological approach
Authors: P Gupta, A Tiwari, A Thora, JK Gandhi, VP Jog
Year: 2016
Citation: 41

Title: SUMOylation of enzymes and ion channels in sensory neurons protects against metabolic dysfunction, neuropathy, and sensory loss in diabetes
Authors: N Agarwal, FJ Taberner, DR Rojas, M Moroni, D Omberbasic, C Njoo, …
Year: 2020
Citation: 39

Title: An introduction of soft computing approach over hard computing
Authors: P Gupta, N Kulkarni
Year: 2013
Citation: 31

Title: People detection and counting using YOLOv3 and SSD models
Authors: P Gupta, V Sharma, S Varma
Year: 2021
Citation: 30

Title: Challenges in the adaptation of IoT technology
Authors: Neha, P Gupta, MA Alam
Year: 2021
Citation: 20

Title: Role of fine needle aspiration cytology in preoperative diagnosis of ameloblastoma
Authors: S Bisht, SA Kotwal, P Gupta, R Dawar
Year: 2009
Citation: 13

Title: Let the Blind See: An AIIoT based device for real-time object recognition with the voice conversion
Authors: P Gupta, M Shukla, N Arya, U Singh, K Mishra
Year: 2022
Citation: 9

Title: The impact of artificial intelligence on renewable energy systems
Authors: P Gupta, S Kumar, YB Singh, P Singh, SK Sharma, NK Rathore
Year: 2022
Citation: 8

Title: Simultaneous feature selection and clustering of micro-array and RNA-sequence gene expression data using multiobjective optimization
Authors: AK Alok, P Gupta, S Saha, V Sharma
Year: 2020
Citation: 8

Title: Activity detection and counting people using mask-RCNN with bidirectional ConvLSTM
Authors: P Gupta, U Singh, M Shukla
Year: 2022
Citation: 7

Title: Study of cloud providers (azure, amazon, and oracle) according to service availability and price
Authors: A Rajput, P Gupta, P Ghodeshwar, S Varma, KK Sharma, U Singh
Year: 2023
Citation: 6

Title: Machine learning approaches for IoT-data classification
Authors: O Farooq, P Gupta
Year: 2020
Citation: 5

Title: Evaluation of AI system’s voice recognition performance in social conversation
Authors: SK Barnwal, P Gupta
Year: 2022
Citation: 4

Title: Analysis of CNN Model with Traditional Approach and Cloud AI based Approach
Authors: U Kushwaha, P Gupta, S Airen, M Kuliha
Year: 2022
Citation: 4

Title: Analysis of crowd features based on deep learning
Authors: P Gupta, V Sharma, S Varma
Year: 2022
Citation: 4

Title: Acknowledgment of patient in sense behaviors using bidirectional ConvLSTM
Authors: U Singh, P Gupta, M Shukla, V Sharma, S Varma, SK Sharma
Year: 2023
Citation: 3

Title: Study on the NB-IoT based smart medical system
Authors: P Gupta, AK Pandey
Year: 2023
Citation: 3

Conclusion

Dr. Puja Gupta is highly deserving of the Best Researcher Award for her significant contributions to advancing research in artificial intelligence, IoT, and smart technologies, as well as her role in mentoring students and fostering innovation. Her impactful work, including patents, high-quality publications, and practical product development, has addressed societal challenges in healthcare, security, and sustainability. With her strong academic background, leadership in academic and community initiatives, and commitment to continuous growth, she holds great potential to further excel in future research, expand global collaborations, and take on greater leadership roles in the academic and research community.

Mohamed Hebaishy | Computer Vision | Excellence in Computer Vision Award

Assoc. Prof. Dr. Mohamed Hebaishy | Computer Vision | Excellence in Computer Vision Award

Associate Prof. in ERI at Electronics Research Institute, Egypt

Dr. Mohamed Ahmed Hebaishy is a distinguished researcher with extensive expertise in biometrics, iris recognition, image processing, computer vision, and satellite imaging. He has made remarkable contributions through his work in human identification systems, advanced image representation, and security technologies. His career spans academia, research institutions, and international collaborations, combining theoretical innovation with real-world applications in areas such as space research and remote sensing. He has published in reputed journals and conferences, including IEEE and Springer platforms, and actively engages in research that bridges science and technology. Beyond his research output, he has held significant leadership roles, mentored graduate students, and reviewed research projects for universities and conferences. His diverse professional experiences, strong academic foundation, and continuous pursuit of impactful research highlight his commitment to advancing scientific knowledge and addressing global challenges, making him a valuable contributor to the academic and research community.

Professional Profile 

Google Scholar | Scopus Profile | ORCID Profile 

Education

Dr. Mohamed Ahmed Hebaishy completed his Bachelor of Science in Electronic Engineering with a focus on automatic control and measurements at Menoufia University, where he built a strong foundation in control systems and electronics. He later pursued a Master of Science degree in Electronics and Communication at Cairo University, with his thesis centered on developing a fuzzy controller for flexible joint manipulators, reflecting his early focus on control and automation. His academic journey culminated in earning a Doctor of Philosophy in Information Technology from Vladimir State University in the Russian Federation, specializing in control system analysis and data processing. His doctoral thesis focused on using iris image processing in human identification systems, marking the beginning of his long-term contributions to the field of biometrics. Through these academic achievements, he has combined expertise in engineering, computing, and data-driven technologies, equipping him with the knowledge and skills to contribute meaningfully to interdisciplinary research.

Professional Experience

Dr. Mohamed Ahmed Hebaishy has built a rich professional career across academia and research institutions, holding positions that span lecturer, assistant professor, and department head roles. He has served as a researcher at the Electronics Research Institute, contributing to significant projects in informatics and computer science. His work extended to leadership in national space programs, where he played a key role in satellite image processing and payload command systems for EgyptSat missions. He also gained international academic experience as an assistant professor at Shaqra University in Saudi Arabia, where he later became head of the computer science department. His contributions include guiding research projects, supervising theses, and leading academic initiatives. Additionally, he has been a reviewer for major universities and scientific conferences, reflecting his involvement in shaping the academic community. His experience demonstrates a balance of teaching, research, and leadership, making him a well-rounded academic and professional.

Research Interest

Dr. Mohamed Ahmed Hebaishy’s research interests lie at the intersection of biometrics, image processing, computer vision, and artificial intelligence, with a strong emphasis on human identification systems and security technologies. He has worked extensively on iris recognition, exploring innovative approaches to enhance accuracy and efficiency in biometric applications. His interests also extend to satellite imaging and remote sensing, where he has contributed to projects in national space programs, including the development of image processing systems for EgyptSat satellites. In recent years, his focus has broadened to include advanced methods in pattern recognition, machine learning, and computer-aided automation systems. He is also engaged in applied research addressing real-world challenges such as waste sorting, wireless communication, and medical applications of imaging. His diverse interests reflect a commitment to advancing cutting-edge technologies that improve security, automation, and sustainability, while also fostering new interdisciplinary pathways in computer science and engineering.

Award and Honor

Throughout his career, Dr. Mohamed Ahmed Hebaishy has received recognition for his contributions to research, teaching, and leadership within the fields of biometrics, image processing, and space technology. His involvement in the EgyptSat satellite programs and ITIDA-funded security projects demonstrated his ability to translate research into impactful applications, earning him acknowledgment within the scientific community. He has also been invited as a reviewer for universities, research conferences, and scientific committees, reflecting trust in his expertise and judgment. His leadership as head of the computer science department at Shaqra University further highlights his role in shaping academic excellence and guiding student development. While his curriculum vitae does not list specific awards, his record of sustained contributions, successful project leadership, and active engagement in international research platforms stands as a form of recognition in itself. His ongoing publications in reputed journals further strengthen his professional standing as a dedicated and accomplished researcher.

Research Skill

Dr. Mohamed Ahmed Hebaishy possesses a broad set of research skills that reflect his deep expertise in both theoretical and applied aspects of computer science and engineering. He is skilled in biometric system design, with specialization in iris recognition, image processing algorithms, and human identification technologies. His technical capabilities extend to satellite image analysis, data processing, and control systems, where he has led projects involving payload command systems for national space programs. He is proficient in developing and applying advanced algorithms, including fuzzy logic, wavelet transforms, and optimization techniques, to solve complex research problems. His experience also covers interdisciplinary areas such as wireless communication systems, security applications, and automated testing tools. Beyond technical expertise, he has strong skills in project leadership, academic supervision, and research collaboration, enabling him to contribute effectively to both academic and applied research communities. His skill set demonstrates adaptability, innovation, and problem-solving ability.

Publications Top Notes

Title: A comparative study of QTP and load runner automated testing tools and their contributions to software project scenario
Authors: M Imran, M Hebaishy, AS Alotaibi
Year: 2016
Citation: 12

Title: Road extraction from high resolution satellite images by morphological direction filtering and length filtering
Authors: TM Talal, MI Dessouky, A El-Sayed, M Hebaishy, FA El-Samie
Year: 2008
Citation: 12

Title: Increasing the Efficiency of Iris Recognition Systems by Using Multi-Channel Frequencies of Gabor Filter
Authors: AS Alotaibi, MA Hebaishy
Year: 2014
Citation: 7

Title: Extraction of roads from high-resolution satellite images with the discrete wavelet transform
Authors: TM Talal, A El-Sayed, M Hebaishy, MI Dessouky, SA Alshebeili
Year: 2013
Citation: 4

Title: Optimized Daugman’s algorithm for iris localization
Authors: MA Hebaishy
Year: 2008
Citation: 4

Title: Sibs: A sparse encoder utilizing self-inspired bases for efficient image representation
Authors: AN Omara, MA Hebaishy, MS Abdallah, YI Cho
Year: 2024
Citation: 3

Title: Poster: Optimized Daugman’s algorithm for iris localization
Authors: M Hebaishy
Year: 2008
Citation: 3

Title: Fast Fingerprint Identification based on the DoG Filter
Authors: MA Hebaishy, FA Syam
Year: 2025

Title: S-shaped patch antenna array for automotive applications in X-band for wireless communications
Authors: MA Hebaishy
Year: 2024

Title: Building an automatic waste sorting system with controller based wireless sensor smart segregation system
Authors: MA Hebaishy
Year: 2024

Title: Security system based on human iris
Authors: HS Ahmed, MA Hebaishy
Year: 2014

Title: Attitude determination for geostationary satellite using optimized real time image registration algorithm
Authors: AE OA Elsayed, A Farrag, M Hebaishy
Year: 2009

Title: Texture analysis of the human iris for high authentication
Authors: MA Hebaishy, BV Gerkov
Year: 2002

Title: Using phase demodulator for encoding iris
Authors: AS Alotaibi, MA Hebaishy

Conclusion

Dr. Mohamed Ahmed Hebaishy is highly deserving of the Best Researcher Award for his significant contributions to biometrics, image processing, and satellite imaging, which have advanced both scientific understanding and practical applications in security and space research. His extensive academic career, impactful publications, leadership roles, and dedication to mentoring students highlight his commitment to advancing knowledge and fostering innovation. With his proven expertise and strong foundation in applied research, he is well positioned to continue driving advancements in computer vision, human identification systems, and international collaborations, further strengthening his role as a leader in research and society.

Prof. Vaclav Skala | Computer Vision | Best Researcher Award

Prof. Vaclav Skala | Computer Vision | Best Researcher Award

Professor at University of West Bohemia, Czech Republic

👨‍🎓 Publication Profiles

Scopus

Orcid

Publications

A new fully projective O(lg N) line convex polygon intersection algorithm

  • Authors: Václav V. Skala
    Journal: Visual Computer
    Year: 2025

A new fully projective O(log N) point-in-convex polygon algorithm: a new strategy

  • Authors: Václav V. Skala
    Journal: Visual Computer
    Year: 2024

Meshfree Interpolation of Multidimensional Time-Varying Scattered Data

  • Authors: Václav V. Skala, Eliska E. Mourycova
    Journal: Computers
    Year: 2023

Multispectral Image Generation from RGB Based on WSL Color Representation: Wavelength, Saturation, and Lightness

  • Authors: Václav V. Skala
    Journal: Computers
    Year: 2023

Robust Line-Convex Polygon Intersection Computation in E2 using Projective Space Representation

  • Author: Václav V. Skala
    Journal: Machine Graphics and Vision
    Year: 2023

Assist Prof Dr. Tiande Wen | 3D Computer Vision | Best Researcher Award

Education

  • B.S. in Mechanical Engineering and Automation, Jiangxi University of Science and Technology (2010-2014)
  • Ph.D. in Geotechnical and Environmental Mechanics, Dalian University of Technology (2016-2019)

💼 Professional Experience

  • Postdoctoral Researcher, Shenzhen University (2019-2021)
  • Assistant Professor, Shantou University (2021-Present)

🔬 Research Focus

  • Microscopic pore structure and hydraulic characteristics of unsaturated soils
  • Improved micromicrostructure and water-force characteristics of granite residual soil

📈 Current Projects

Host of multiple research projects, including those funded by the National Natural Science Foundation of China and Guangdong Province, focusing on unsaturated soil experiments and numerical simulations.

Publications

Carbon fiber and PVA fiber reinforced concrete: Electrical resistivity and piezoresistive properties

  • Authors: Tang, M., Chen, X., Luo, Y., Gao, L., Wen, T.
  • Journal: Materials Letters
  • Year: 2024

Effects of representative elementary volume size on three-dimensional pore characteristics for modified granite residual soil

  • Authors: Wen, T., Luo, Y., Tang, M., Chen, X., Shao, L.
  • Journal: Journal of Hydrology
  • Year: 2024

Employing novel N-doped graphene quantum dots to improve chloride binding of cement

  • Authors: He, H., E, S., Wen, T., He, C., Yu, Y.
  • Journal: Construction and Building Materials
  • Year: 2023

Three-dimensional pore structure characteristics of granite residual soil and their relationship with hydraulic properties under different particle gradation by X-ray computed tomography

  • Authors: Wen, T., Chen, X., Luo, Y., Shao, L., Niu, G.
  • Journal: Journal of Hydrology
  • Year: 2023

One−Dimensional Seepage of Unsaturated Soil Based on Soil−Water Characteristic Curve

  • Authors: Shao, L., Wu, S., Guo, X., Wen, T.
  • Journal: Processes
  • Year: 2022

Prof. Aasma Shaukat | Applications of Computer Vision | Best Paper Award

Prof. Aasma Shaukat | Applications of Computer Vision | Best Paper Award

Professor at New York University, United States

Profiles

Scopus

Google Scholar

Education

Dr. Shaukat completed her F.Sc Pre-Medical at Kinnaird College for Women, Lahore in 1993. She earned her M.B., B.S. in Medicine from The Aga Khan University Medical College, Karachi in 1998. Her postgraduate studies include an MPH in International Health and Epidemiology from Johns Hopkins School of Public Health (2000), an Internship in Internal Medicine at State University of New York School of Medicine and Biomedical Sciences (2001), a Residency in Internal Medicine at the same institution (2003), and a Fellowship in Gastroenterology from Emory University School of Medicine (2007).

Current Appointments and Leadership Positions

Dr. Aasma Shaukat is the Program Director of KL2 at CTSI NYU (since January 2024). She has been serving as the Director of GI Outcomes Research and the Robert M. and Mary H. Glickman Endowed Professor of Medicine at NYU School of Medicine since July 2021. Additionally, she is a Professor of Population Health and Co-Director of the TREC Program at CTSI. She also holds a position as a Staff Physician at NY Harbor VA, New York and is an Adjunct Professor at the University of Minnesota School of Public Health (since May 2018).

Awards and Honors

Among her numerous accolades, Dr. Shaukat was selected for the AGA Executive Women Leadership workshop in Denver (2023) and received the ACG Colon Cancer Prevention Abstract Award in Vancouver (2023). She has been honored with the American College of Gastroenterology Governor’s Award for Excellence in Clinical Research (2020) and the AGA Young Investigator Award (2016). Other notable awards include the Champion of Colorectal Cancer Prevention Award (2014) and multiple Teacher of the Year Awards from the University of Minnesota Medical School.

Memberships and Professional Organizations

Dr. Shaukat is a Member of the Board of Trustees at the American College of Gastroenterology and the Chair Elect of the Clinical Practice Section at the American Gastroenterology Association Institute. She is also a Board Member of GIQUIC and serves on the Advisory Panel of PCORI. Her involvement includes being a Member of the DEI Committee at ASCI, Chair of the GI Field Advisory Board at VHA, and a Member of the US Multi-Society Task Force on Colon Cancer.

Research Activity

Dr. Shaukat’s research is centered around clinical, epidemiological, and translational studies focusing on colorectal cancer screening, quality indicators for colonoscopy, molecular markers of post-colonoscopy colon cancer, and chemoprevention. She is currently leading comparative effectiveness trials, including studies on fecal microbiota transplants for recurrent C. difficile infection and evaluating screening modalities to enhance colorectal cancer screening programs, especially in reducing disparities. Her expertise extends to systematic review and evidence synthesis.

Clinical Activity

Dr. Shaukat dedicates 35% of her time to endoscopy and outpatient GI clinic work, focusing on gastrointestinal (GI) cancers, both hereditary and sporadic. She has a special interest in quality indicators and the development of tools and techniques to enhance colonoscopy outcomes.

Mentoring Activity

As a dedicated mentor, Dr. Shaukat serves as Co-Director of NYU CTSI’s Training Education Research and Careers Core, overseeing educational and training initiatives across NYU. She also directs the KL2 program, mentoring KL2 scholars and K awardees to achieve independent funding. Dr. Shaukat’s mentorship extends across various roles, including primary mentoring responsibilities for junior faculty, colorectal surgery, and gastroenterology fellows. Her commitment to mentorship is reflected in her publications, where she has co-authored numerous papers with her mentees, many of whom have progressed to prominent positions in the medical field.

Teaching Activities

Dr. Shaukat plays a significant role in teaching and curriculum development. She co-directs the K to R Scholars Program at NYU and has been involved in teaching colon cancer topics to second-year medical students. Her past roles include serving as Site Director for trainee rotations at the VA Medical Center in Minneapolis, MN, and developing curriculum and journal club lectures for GI fellows.

Continuing Medical Education

Dr. Shaukat has been actively involved in continuing medical education, serving as Course Director for various ASGE and American College of Gastroenterology postgraduate courses. Her contributions to medical education extend to her role as faculty for regional conferences and her involvement in educational affairs and peer review committees.

 

Publications

Effect of ginger supplementation on the fecal microbiome in subjects with prior colorectal adenoma

  • Authors: Prakash, A., Rubin, N., Staley, C., Church, T.R., Prizment, A.
  • Journal: Scientific Reports
  • Year: 2024

Adenomas and Sessile Serrated Lesions in 45- to 49-Year-Old Individuals Undergoing Colonoscopy: A Systematic Review and Meta-Analysis

  • Authors: Abdallah, M., Mohamed, M.F.H., Abdalla, A.O., Bilal, M., Shaukat, A.
  • Journal: American Journal of Gastroenterology
  • Year: 2024
  • Authors: Weaver, L., Mott, S.L., Thatipelli, S., Shaukat, A., Goffredo, P.
  • Journal: Journal of Gastrointestinal Surgery
  • Year: 2024

Multilevel Interventions to Improve Colorectal Cancer Screening in an Urban Native American Community: A Pilot Randomized Clinical Trial

  • Authors: Shaukat, A., Wolf, J., Rudser, K., Wisdom, J.P., Church, T.R.
  • Journal: Clinical Gastroenterology and Hepatology
  • Year: 2024

Prevalence of Sessile Serrated Lesions in Individuals With Positive Fecal Immunochemical Test Undergoing Colonoscopy: Results From a Large Nationwide Veterans Affairs Database

  • Authors: Wilson, N., Bilal, M., Westanmo, A., Gravely, A., Shaukat, A.
  • Journal: Gastroenterology
  • Year: 2024