Naourez Benhadj | Deep Learning | Excellence in Research

Prof. Naourez Benhadj | Deep Learning | Excellence in Research

Associate Professor | Ecole Nationale d’Ingénieurs de Sfax | Tunisian

Dr. Naourez Benhadj is a researcher at the Ecole Nationale d’Ingénieurs de Sfax (ENIS), Tunisia, specializing in electric machines, PMSM design, hybrid/electric vehicle energy management, and intelligent optimization techniques. With 32 scientific publications, 243 citations, and an h-index of 9, he has contributed significantly to fault detection, finite-element modeling, and advanced optimization algorithms, including recent work on transformer-based solar power prediction and PMSM design using chaotic PSO. Collaborating with over 30 international co-authors, his research supports sustainable mobility, smart energy systems, and high-efficiency electric transportation, fostering technological advancement and environmental impact on a global scale.

 

Citation Metrics (Scopus)

400

300

200

100

0

Citations
243

Documents
32

h-index
9

🟦 Citations 🟥 Documents 🟩 h-index

View Scopus Profile
             View Google Scholar Profile
             View ORCID Profile

Featured Publications


Comparison of fuel consumption and emissions of two hybrid electric vehicle configurations.

-International Conference on Sciences and Techniques of Automatic Control and Computer Engineering. (2018) Cited By: 4

Design simulation and realization of solar battery charge controller using Arduino Uno..

-International Conference on Sciences and Techniques of Automatic Control and Computer Engineering . (2017) Cited By: 21

Torque ripple and harmonic density current study in induction motor: Two rotor slot shapes.

– International Review on Modelling and Simulations.(2007). Cited By: 5

Thermal modeling of permanent magnet motor with finite element method.

– International Conference on Sciences and Techniques of Automatic Control and Computer Engineering. (2014). Cited By: 5

Ahmad Reza Naghsh Nilchi | Deep Learning | Best Researcher Award

Prof. Ahmad Reza Naghsh Nilchi | Deep Learning | Best Researcher Award

Faculty Member | University of Isfahan | Iran

Prof. Ahmad Reza Naghsh-Nilchi is a distinguished researcher in computer vision, artificial intelligence, and medical image processing with a strong academic and professional background. He completed his PhD in Electrical and Computer Engineering at Michigan State University, where he specialized in digital image processing, and has since built an influential career in both academia and research. Over the years, he has served in multiple leadership positions including department chair, dean of research, and head of research laboratories, while also supervising numerous PhD and master’s students in advanced AI and imaging topics. His professional experience extends internationally through collaborations with leading institutions such as UC Irvine, University of Toronto, York University, and University of Ireland, contributing significantly to global research initiatives. His research interests span robust deep learning, adversarial defense, trustworthy AI, multimodal action recognition, image captioning, retinal analysis, and robot-camera pose estimation, reflecting both theoretical innovation and practical applications. He has published more than 70 papers in prestigious journals and conferences indexed by IEEE and Scopus, and his work has received more than 2,200 citations. His excellence has been recognized through multiple honors, including awards as University Researcher of the Year and Industrial Researcher of the Year. He possesses advanced research skills in AI model development, medical imaging, digital signal processing, and multimodal data analysis, complemented by editorial roles, conference organization, and active memberships in professional associations such as IEEE and ACM. His career demonstrates a commitment to advancing science, mentoring the next generation, and fostering impactful interdisciplinary collaborations. His Scopus output reflects international impact, with 1,319 citations by 1,214 documents, 65 published documents, and an h-index of 21.

Profile: Google Scholar | Scopus Profile | ORCID Profile

Featured Publications

Fathi, A., & Naghsh-Nilchi, A. R. (2012). Noise tolerant local binary pattern operator for efficient texture analysis. Pattern Recognition Letters, 33(9), 1093–1100.

Fathi, A., & Naghsh-Nilchi, A. R. (2012). Efficient image denoising method based on a new adaptive wavelet packet thresholding function. IEEE Transactions on Image Processing, 21(9), 3981–3990.

Fathi, A., & Naghsh-Nilchi, A. R. (2013). Automatic wavelet-based retinal blood vessels segmentation and vessel diameter estimation. Biomedical Signal Processing and Control, 8(1), 71–80.

Amirgholipour, S. K., & Ahmad, R. (2009). Robust digital image watermarking based on joint DWT-DCT. International Journal of Digital Content Technology and its Applications, 3(2), 42–48.*

Kasmani, S. A., & Naghsh-Nilchi, A. (2008). A new robust digital image watermarking technique based on joint DWT-DCT transformation. In 2008 Third International Conference on Convergence and Hybrid Information Technology (pp. 539–544). IEEE.

Zahra Yahyaoui | Deep Learning | Women Researcher Award

Dr. Zahra Yahyaoui | Deep Learning | Women Researcher Award

Teacher-Researcher at Higher Institute of Applied Sciences and Technology of Kasserine, Kairouan University | Tunisia

Dr. Zahra Yahyaoui is a dedicated researcher and educator with expertise in electronics, microelectronics, renewable energy systems, and artificial intelligence. She has established herself as an active contributor to the advancement of intelligent fault detection and diagnosis methods for photovoltaic and wind energy conversion systems. Her work bridges theory and practice, combining advanced machine learning techniques with embedded hardware implementation, ensuring her research is both academically rigorous and industrially relevant. Alongside her research activities, she has been deeply involved in teaching, supervision, and mentoring, helping to shape the academic and professional development of students in electronics and applied sciences. Her publications in high-impact journals and participation in international conferences highlight her growing recognition in the global research community. With technical versatility, adaptability, and strong teamwork skills, she continues to contribute to sustainable solutions in energy systems while promoting innovation, academic excellence, and interdisciplinary collaboration.

Professional Profiles 

Scopus Profile | ORCID Profile 

Education

Dr. Zahra Yahyaoui pursued her academic path in Tunisia, beginning with a bachelor’s degree in industrial computing with a specialization in embedded systems. She then advanced to a master’s research degree in nanomaterials and embedded electronics, where she specialized in embedded electronics and conducted important research on fault detection and diagnosis in wind energy systems using machine learning. Building on this foundation, she completed her doctoral studies in electronics and microelectronics at the Higher Institute of Applied Sciences and Technology of Kasserine, Kairouan University. Her PhD research focused on developing enhanced intelligent data-driven paradigms for fault detection and diagnosis in power systems, with practical applications on embedded architectures. She carried out her doctoral work within the Research Unit of Advanced Materials and Nanotechnologies, furthering her expertise at the intersection of artificial intelligence, renewable energy, and electronic systems. This strong academic background reflects her commitment to innovative, multidisciplinary research.

Professional Experience

Dr. Zahra Yahyaoui has built a solid academic and professional career through her teaching and research activities. She started as a part-time teacher at the Higher Institute of Applied Sciences and Technology of Kasserine, where she gained experience delivering courses and tutorials in electronics, microprocessor and microcontroller architectures, and embedded systems. Her role expanded to contractual teacher at the same institute under Kairouan University, where she was responsible for teaching system-on-chip design, combinational and sequential logic circuits, and analog signal processing, covering both theoretical and practical sessions. In addition to her teaching duties, she has co-supervised master’s theses on advanced topics such as interval-valued machine learning, deep learning for fault detection in renewable systems, and photovoltaic installation design. Through her academic contributions, she has combined teaching excellence with mentoring, ensuring students receive both theoretical knowledge and practical insights. Her professional journey highlights her commitment to education, innovation, and applied research.

Research Interest

Dr. Zahra Yahyaoui’s research interests lie at the intersection of electronics, artificial intelligence, and renewable energy systems. She focuses on developing intelligent data-driven approaches for fault detection and diagnosis, aiming to enhance the reliability and efficiency of power systems such as photovoltaic and wind energy converters. Her work emphasizes the use of advanced machine learning and deep learning techniques, including BiLSTM, GRU, and optimization algorithms, to address uncertainty in renewable energy conversion and monitoring. She is also interested in the implementation of these algorithms on embedded architectures, integrating software with hardware platforms like FPGA, Raspberry Pi, and microcontrollers for real-world applications. Beyond fault diagnosis, she explores forecasting methods for solar irradiance and power output, contributing to the broader field of sustainable energy management. By combining theoretical modeling, algorithm development, and embedded system integration, her research supports innovation in intelligent renewable energy technologies.

Research Skill

Dr. Zahra Yahyaoui has developed a diverse set of research skills that enable her to carry out impactful and interdisciplinary work. She is proficient in programming languages such as MATLAB and Python, which she uses extensively for data analysis, machine learning model development, and algorithm implementation. She is skilled in simulation tools like ISE and Simplorer, supporting her expertise in circuit and system design. Her hardware-related skills include working with Siemens S7-1200, FPGA boards, Raspberry Pi, and Arduino microcontrollers, allowing her to translate theoretical models into practical embedded system solutions. She has strong problem-solving abilities, adaptability, and teamwork skills, which contribute to successful research collaborations and academic projects. Her research methodology combines theoretical analysis with experimental validation, ensuring robust and application-oriented results. With certifications in artificial intelligence and embedded systems, she brings an advanced skillset for developing intelligent monitoring and diagnostic systems, particularly for renewable energy applications.

Publications Top Notes

Title: Fault detection and diagnosis in grid-connected PV systems under irradiance variations
Authors: Hajji, M.; Yahyaoui, Z.; Mansouri, M.; Nounou, H.; Nounou, M.
Year: 2023

Title: One-Class Machine Learning Classifiers-Based Multivariate Feature Extraction for Grid-Connected PV Systems Monitoring under Irradiance Variations
Authors: Yahyaoui, Z.; Hajji, M.; Mansouri, M.; Bouzrara, K.
Year: 2023

Title: Effective Fault Detection and Diagnosis for Power Converters in Wind Turbine Systems Using KPCA-Based BiLSTM
Authors: Yahyaoui, Z.; Hajji, M.; Mansouri, M.; Abodayeh, K.; Bouzrara, K.; Nounou, H.
Year: 2022

Title: Kernel PCA based BiLSTM for Fault Detection and Diagnosis for Wind Energy Converter Systems
Authors: Yahyaoui, Z.; Hajji, M.; Mansouri, M.; Bouzrara, K.; Nounou, H.; Nounou, M.
Year: 2022

Title: Efficient fault detection and diagnosis of wind energy converter systems
Authors: Yahyaoui, Z.; Hajji, M.; Mansouri, M.; Harkat, M.-F.; Kouadri, A.; Nounou, H.; Nounou, M.
Year: 2020

Conclusion

Dr. Zahra Yahyaoui is a deserving candidate for the Best Researcher Award due to her significant contributions in advancing intelligent data-driven techniques for renewable energy systems, fault detection, and embedded architectures. Her research has produced valuable publications in reputed international journals and conferences, with practical applications that support sustainable energy and technological innovation. Through her teaching, mentorship, and active participation in the academic community, she has demonstrated a strong commitment to knowledge sharing and capacity building. With her proven expertise, dedication, and potential for future leadership, she is well positioned to continue making impactful contributions to both research and society.

Mr. Andrews Tang | Deep Learning | Best Researcher Award

Mr. Andrews Tang | Deep Learning | Best Researcher Award

Andrews Tang at Kwame Nkrumah University of Science and Technology, Ghana

👨‍🎓 Profiles

Scopus

Google Scholar

Publications

Assessing blockchain and IoT technologies for agricultural food supply chains in Africa: A feasibility analysis

  • Authors: Andrews Tang, Eric Tutu Tchao, Andrew Selasi Agbemenu, Eliel Keelson, Griffith Selorm Klogo, Jerry John Kponyo
  • Journal: Heliyon
  • Year: 2024

An Open and Fully Decentralised Platform for Safe Food Traceability

  • Authors: Eric Tutu Tchao, Elton Modestus Gyabeng, Andrews Tang, Joseph Barnes Nana Benyin, Eliel Keelson, John Jerry Kponyo
  • Year: 2022

Prof. Ling Yang | Deep Learning | Women Researcher Award

Prof. Ling Yang | Deep Learning | Women Researcher Award

Professor at Kunming University of Science and Technology, China

👨‍🎓 Profiles

Scopus

Orcid

Publications

Enhancing Panax notoginseng Leaf Disease Classification with Inception-SSNet and Image Generation via Improved Diffusion Model

  • Authors: Wang, R., Zhang, X., Yang, Q., Liang, J., Yang, L.
  • Journal: Agronomy
  • Year: 2024

Deep learning implementation of image segmentation in agricultural applications: a comprehensive review

  • Authors: Lei, L., Yang, Q., Yang, L., Wang, R., Fu, C.
  • Journal: Artificial Intelligence Review
  • Year: 2024

Alternate micro-sprinkler irrigation and organic fertilization decreases root rot and promotes root growth of Panax notoginseng by improving soil environment and microbial structure in rhizosphere soil

  • Authors: Zang, Z., Yang, Q., Liang, J., Guo, J., Yang, L.
  • Journal: Industrial Crops and Products
  • Year: 2023

A BlendMask-VoVNetV2 method for quantifying fish school feeding behavior in industrial aquaculture

  • Authors: Yang, L., Chen, Y., Shen, T., Yu, H., Li, D.
  • Journal: Computers and Electronics in Agriculture
  • Year: 2023

An FSFS-Net Method for Occluded and Aggregated Fish Segmentation from Fish School Feeding Images

  • Authors: Yang, L., Chen, Y., Shen, T., Li, D.
  • Journal: Applied Sciences (Switzerland)
  • Year: 2023

Ms. Linjing Wei | Deep Learning | Best Researcher Award

Ms. Linjing Wei | Deep Learning | Best Researcher Award

Linjing Wei at Gansu Agricultural University, China

Profile

Scopus

Academic Background:

Ms. Linjing Wei is a distinguished female professor at Gansu Agricultural University, specializing in Grassland Science with a research focus on Grassland Informatics. Born in July 1977, she has made significant contributions to her field through her extensive research, academic guidance, and numerous publications.

Education:

Ms. Wei earned her PhD in Grassland Science from Gansu Agricultural University in June 2015. Her educational background has provided a strong foundation for her academic and research pursuits.

Professional Experience:

Ms. Wei teaches several courses for master’s students, including Introduction to Cloud Computing, Case Analysis of Software Engineering, Information Systems and Information Resource Management, and Distributed Systems and Cloud Computing Technology. As the first supervisor, she has guided numerous master’s students in various majors, particularly in Agricultural Engineering and Information Technology.

Research Interests:

Ms.Wei's research interests lie in Grassland Informatics. Over the past five years, she has led several key research projects with significant funding, focusing on areas such as data resource integration, intelligent cloud platforms for agricultural logistics, ecosystem restoration and monitoring, sustainable development planning, and trustworthy traceability systems for agricultural products. Her published works include papers in prestigious journals like Sensors and the Canadian Journal of Remote Sensing, as well as contributions to national-level textbooks and academic monographs.

📝 Academic Achievements:

Ms. Wei has an impressive list of published papers, including "Fine Segmentation of Chinese Character Strokes Based on Co-ordinate Awareness and Enhanced BiFPN" in Sensors (2024), "Enhanced Wheat Head Detection in Images Using Fourier Domain Adaptation and Random Guided Filter" in Canadian Journal of Remote Sensing (2024), and "Feature Selection in High Dimensional Biomedical Data Based on BF-SFLA" in Neurogenetics (2022).

 Publications:

Fine Segmentation of Chinese Character Strokes Based on Coordinate Awareness and Enhanced BiFPN
  • Authors:Mo, H., Wei, L.
  • Journal: Sensors
  • Year: 2024
A Smart Chicken Farming Platform for Chicken Behavior Identification and Feed Residual Estimation
  • Authors: Yang, J., Gao, J., Li, Y., Lu, Q., Zheng, H.
  • Journal: Proceedings - 2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023
  • Year: 2023
Feature Selection in High Dimensional Biomedical Data Based on BF-SFLA
  • Authors: Dai, Y., Niu, L., Wei, L., Tang, J.
  • Journal: Frontiers in Neuroscience
  • Year: 2022
Jointly Learning Topics in Sentence Embedding for Document Summarization
  • Authors: Gao, Y., Xu, Y., Huang, H., Wei, L., Liu, L.
  • Journal: IEEE Transactions on Knowledge and Data Engineering
  • Year: 2020
Study on the Matching Algorithm of Turf Grass Introduction Features Based on Big Data Analysis
  • Authors: Wei, L., Dong, W., Gan, S., Wang, Y.
  • Year: 2019

Mr. Xiaoyu Li | Deep Learning | Best Researcher Award

Mr. Xiaoyu Li, Deep Learning, Best Researcher Award

Xiaoyu Li at Beijing Forestry University, China

Professional Profile

🌟 Summary:

Xiaoyu Li is a university student at Beijing Forestry University’s School of Soil and Water Conservation. His research focuses on Remote Sensing & GIS, Image Processing, Land Use, Transportation, UAV utilization, and Ecology. He has contributed to national-level scientific projects, including the Qinghai-Tibet Plateau expedition, and has authored publications in prestigious journals. His work includes assessing human living environments, controlling soil erosion, and studying sediment connectivity and erosion dynamics. Xiaoyu Li has pioneered large-scale land use classification in northwestern China using UAV remote sensing and has contributed to understanding vegetation changes in the Qinghai-Tibet Plateau.

🎓 Education:

Currently pursuing studies at Beijing Forestry University, College of Soil and Water Conservation.

💼 Professional Experience:

Engaged in multiple national-level research projects focusing on environmental assessment, soil erosion control, and watershed dynamics.

🔬 Research Interests:

  • Remote Sensing & GIS
  • Image Processing and Analysis
  • Land Use and Transportation
  • UAV (drone) utilization and Ecology

📖 Publications Top Noted:

Paper Title: Land-Use Composition, Distribution Patterns, and Influencing Factors of Villages in the Hehuang Valley, Qinghai, China, Based on UAV Photogrammetry
  • Authors: Xiaoyu Li, Zhongbao Xin
  • Journal: Remote Sensing
  • Year: 2024