Naourez Benhadj | Deep Learning | Excellence in Research

Prof. Naourez Benhadj | Deep Learning | Excellence in Research

Associate Professor | Ecole Nationale d’Ingénieurs de Sfax | Tunisian

Dr. Naourez Benhadj is a researcher at the Ecole Nationale d’Ingénieurs de Sfax (ENIS), Tunisia, specializing in electric machines, PMSM design, hybrid/electric vehicle energy management, and intelligent optimization techniques. With 32 scientific publications, 243 citations, and an h-index of 9, he has contributed significantly to fault detection, finite-element modeling, and advanced optimization algorithms, including recent work on transformer-based solar power prediction and PMSM design using chaotic PSO. Collaborating with over 30 international co-authors, his research supports sustainable mobility, smart energy systems, and high-efficiency electric transportation, fostering technological advancement and environmental impact on a global scale.

 

Citation Metrics (Scopus)

400

300

200

100

0

Citations
243

Documents
32

h-index
9

🟦 Citations 🟥 Documents 🟩 h-index

View Scopus Profile
             View Google Scholar Profile
             View ORCID Profile

Featured Publications


Comparison of fuel consumption and emissions of two hybrid electric vehicle configurations.

-International Conference on Sciences and Techniques of Automatic Control and Computer Engineering. (2018) Cited By: 4

Design simulation and realization of solar battery charge controller using Arduino Uno..

-International Conference on Sciences and Techniques of Automatic Control and Computer Engineering . (2017) Cited By: 21

Torque ripple and harmonic density current study in induction motor: Two rotor slot shapes.

– International Review on Modelling and Simulations.(2007). Cited By: 5

Thermal modeling of permanent magnet motor with finite element method.

– International Conference on Sciences and Techniques of Automatic Control and Computer Engineering. (2014). Cited By: 5

Varsha Singh | Deep Learning for Computer Vision | Best Researcher Award

Ms. Varsha Singh | Deep Learning for Computer Vision | Best Researcher Award

Research Scholar (Ph.D.) | National Institute of Technology | India

Ms. Varsha Singh is a dedicated researcher at the National Institute of Technology, Tiruchirappalli, specializing in deep learning, computer vision, and efficient image super-resolution architectures. Her research is centered on developing lightweight yet high-performing neural models that enhance perceptual image quality through advanced multi-scale feature extraction, attention mechanisms, and dense connectivity designs.Her notable contribution, Optimized and Deep Cross Dense Skip Connected Network for Single Image Super-Resolution (DCDSCN) published in SN Computer Science introduced a cross-dense skip-connected framework that effectively balances computational efficiency and reconstruction accuracy. The proposed Cross Dense-in-Dense Convolution Block (CDDCB) leverages multi-branch feature fusion and short-path gradient propagation, achieving superior PSNR and SSIM performance across benchmark datasets such as Set5, Set14, BSD100, and Urban100. Building on this foundation, her subsequent work Multi-Scale Attention Residual Convolution Neural Network for Single Image Super-Resolution (MSARCNN) published in Digital Signal Processing Elsevier  advances the field through the integration of Squeeze-and-Excitation and Pixel Attention modules within a multi-scale residual framework, enabling fine-grained texture recovery while maintaining low model complexity.With two international journal publications, Ms. Singh’s work demonstrates a strong emphasis on hierarchical feature fusion, adaptive attention modeling, and efficient neural design for real-time visual intelligence. She actively contributes to the scholarly community as a reviewer for the International Research Journal of Multidisciplinary Technovation (Scopus Indexed), where she has evaluated research papers in deep learning and image processing.Ms. Singh’s contributions bridge theoretical innovation and practical deployment, particularly in resource-constrained imaging and enhancement systems, fostering advancements in next-generation super-resolution and perceptual image restoration. Her research continues to strengthen the global discourse on AI-driven visual computing, supporting the development of intelligent and sustainable imaging solutions for diverse real-world applications.

Profiles: Google Scholar ResearchGate

Featured Publications

1.Singh, V., Vedhamuru, N., Malmathanraj, R., & Palanisamy, P. (2025). Multi-scale attention residual convolution neural network for single image super-resolution (MSARCNN). Digital Signal Processing, 146, 105614.

2.Singh, V., Vedhamuru, N., Malmathanraj, R., & Palanisamy, P. (2025). Optimized and deep cross dense skip connected network for single image super-resolution (DCDSCN). SN Computer Science, 6(5), 495.

Ms. Varsha Singh’s research advances efficient deep learning and image super-resolution, enabling high-quality visual reconstruction with minimal computational cost. Her innovations contribute to scientific progress in AI-driven imaging, with potential applications in medical diagnostics, remote sensing, and real-time visual enhancement, driving global innovation in sustainable and intelligent vision technologies.

Zahra Yahyaoui | Deep Learning | Women Researcher Award

Dr. Zahra Yahyaoui | Deep Learning | Women Researcher Award

Teacher-Researcher at Higher Institute of Applied Sciences and Technology of Kasserine, Kairouan University | Tunisia

Dr. Zahra Yahyaoui is a dedicated researcher and educator with expertise in electronics, microelectronics, renewable energy systems, and artificial intelligence. She has established herself as an active contributor to the advancement of intelligent fault detection and diagnosis methods for photovoltaic and wind energy conversion systems. Her work bridges theory and practice, combining advanced machine learning techniques with embedded hardware implementation, ensuring her research is both academically rigorous and industrially relevant. Alongside her research activities, she has been deeply involved in teaching, supervision, and mentoring, helping to shape the academic and professional development of students in electronics and applied sciences. Her publications in high-impact journals and participation in international conferences highlight her growing recognition in the global research community. With technical versatility, adaptability, and strong teamwork skills, she continues to contribute to sustainable solutions in energy systems while promoting innovation, academic excellence, and interdisciplinary collaboration.

Professional Profiles 

Scopus Profile | ORCID Profile 

Education

Dr. Zahra Yahyaoui pursued her academic path in Tunisia, beginning with a bachelor’s degree in industrial computing with a specialization in embedded systems. She then advanced to a master’s research degree in nanomaterials and embedded electronics, where she specialized in embedded electronics and conducted important research on fault detection and diagnosis in wind energy systems using machine learning. Building on this foundation, she completed her doctoral studies in electronics and microelectronics at the Higher Institute of Applied Sciences and Technology of Kasserine, Kairouan University. Her PhD research focused on developing enhanced intelligent data-driven paradigms for fault detection and diagnosis in power systems, with practical applications on embedded architectures. She carried out her doctoral work within the Research Unit of Advanced Materials and Nanotechnologies, furthering her expertise at the intersection of artificial intelligence, renewable energy, and electronic systems. This strong academic background reflects her commitment to innovative, multidisciplinary research.

Professional Experience

Dr. Zahra Yahyaoui has built a solid academic and professional career through her teaching and research activities. She started as a part-time teacher at the Higher Institute of Applied Sciences and Technology of Kasserine, where she gained experience delivering courses and tutorials in electronics, microprocessor and microcontroller architectures, and embedded systems. Her role expanded to contractual teacher at the same institute under Kairouan University, where she was responsible for teaching system-on-chip design, combinational and sequential logic circuits, and analog signal processing, covering both theoretical and practical sessions. In addition to her teaching duties, she has co-supervised master’s theses on advanced topics such as interval-valued machine learning, deep learning for fault detection in renewable systems, and photovoltaic installation design. Through her academic contributions, she has combined teaching excellence with mentoring, ensuring students receive both theoretical knowledge and practical insights. Her professional journey highlights her commitment to education, innovation, and applied research.

Research Interest

Dr. Zahra Yahyaoui’s research interests lie at the intersection of electronics, artificial intelligence, and renewable energy systems. She focuses on developing intelligent data-driven approaches for fault detection and diagnosis, aiming to enhance the reliability and efficiency of power systems such as photovoltaic and wind energy converters. Her work emphasizes the use of advanced machine learning and deep learning techniques, including BiLSTM, GRU, and optimization algorithms, to address uncertainty in renewable energy conversion and monitoring. She is also interested in the implementation of these algorithms on embedded architectures, integrating software with hardware platforms like FPGA, Raspberry Pi, and microcontrollers for real-world applications. Beyond fault diagnosis, she explores forecasting methods for solar irradiance and power output, contributing to the broader field of sustainable energy management. By combining theoretical modeling, algorithm development, and embedded system integration, her research supports innovation in intelligent renewable energy technologies.

Research Skill

Dr. Zahra Yahyaoui has developed a diverse set of research skills that enable her to carry out impactful and interdisciplinary work. She is proficient in programming languages such as MATLAB and Python, which she uses extensively for data analysis, machine learning model development, and algorithm implementation. She is skilled in simulation tools like ISE and Simplorer, supporting her expertise in circuit and system design. Her hardware-related skills include working with Siemens S7-1200, FPGA boards, Raspberry Pi, and Arduino microcontrollers, allowing her to translate theoretical models into practical embedded system solutions. She has strong problem-solving abilities, adaptability, and teamwork skills, which contribute to successful research collaborations and academic projects. Her research methodology combines theoretical analysis with experimental validation, ensuring robust and application-oriented results. With certifications in artificial intelligence and embedded systems, she brings an advanced skillset for developing intelligent monitoring and diagnostic systems, particularly for renewable energy applications.

Publications Top Notes

Title: Fault detection and diagnosis in grid-connected PV systems under irradiance variations
Authors: Hajji, M.; Yahyaoui, Z.; Mansouri, M.; Nounou, H.; Nounou, M.
Year: 2023

Title: One-Class Machine Learning Classifiers-Based Multivariate Feature Extraction for Grid-Connected PV Systems Monitoring under Irradiance Variations
Authors: Yahyaoui, Z.; Hajji, M.; Mansouri, M.; Bouzrara, K.
Year: 2023

Title: Effective Fault Detection and Diagnosis for Power Converters in Wind Turbine Systems Using KPCA-Based BiLSTM
Authors: Yahyaoui, Z.; Hajji, M.; Mansouri, M.; Abodayeh, K.; Bouzrara, K.; Nounou, H.
Year: 2022

Title: Kernel PCA based BiLSTM for Fault Detection and Diagnosis for Wind Energy Converter Systems
Authors: Yahyaoui, Z.; Hajji, M.; Mansouri, M.; Bouzrara, K.; Nounou, H.; Nounou, M.
Year: 2022

Title: Efficient fault detection and diagnosis of wind energy converter systems
Authors: Yahyaoui, Z.; Hajji, M.; Mansouri, M.; Harkat, M.-F.; Kouadri, A.; Nounou, H.; Nounou, M.
Year: 2020

Conclusion

Dr. Zahra Yahyaoui is a deserving candidate for the Best Researcher Award due to her significant contributions in advancing intelligent data-driven techniques for renewable energy systems, fault detection, and embedded architectures. Her research has produced valuable publications in reputed international journals and conferences, with practical applications that support sustainable energy and technological innovation. Through her teaching, mentorship, and active participation in the academic community, she has demonstrated a strong commitment to knowledge sharing and capacity building. With her proven expertise, dedication, and potential for future leadership, she is well positioned to continue making impactful contributions to both research and society.