Shujiao Liao | Machine Learning | Best Researcher Award

Prof . Shujiao Liao | Machine Learning | Best Researcher Award

Professor at Minnan Normal University, China

Dr. Shujiao Liao is a full professor at the School of Mathematics and Statistics, Minnan Normal University, Zhangzhou, Fujian, China. With a strong academic background in applied mathematics and software engineering, she has dedicated her career to advancing the fields of granular computing, data mining, and machine learning. Her work bridges theoretical mathematics and computational methodologies, enabling novel approaches to intelligent data analysis. Over the years, Dr. Liao has played a pivotal role in both academic teaching and research leadership, contributing significantly to her institution’s development and scholarly output. She has guided numerous students and collaborated across interdisciplinary research groups. Her commitment to innovation and academic excellence makes her a respected figure in her field. As a scholar deeply engaged in cutting-edge technologies and data science trends, she continues to contribute impactful research and strives to address complex problems with analytical precision and computational insight.

Professional Profile 

Education🎓

Dr. Shujiao Liao holds a strong interdisciplinary educational background that underpins her academic career. She earned her Master of Science degree in Applied Mathematics from Shantou University, Guangdong, China, in 2006, where she built a solid foundation in mathematical modeling and analytical reasoning. Her pursuit of advanced studies led her to obtain a Ph.D. degree in Software Engineering from the University of Electronic Science and Technology of China, Chengdu, Sichuan, in 2018. This advanced degree enabled her to integrate mathematical theory with practical software systems, contributing to her versatility in computational research. Her doctoral studies focused on bridging data-centric algorithms with intelligent systems, which now form the core of her research interests. This rich educational trajectory has allowed her to approach complex scientific questions from both a mathematical and engineering perspective, making her academic contributions particularly robust in the fields of data mining and machine learning.

Professional Experience📝

Dr. Shujiao Liao is currently a full professor at the School of Mathematics and Statistics, Minnan Normal University, Zhangzhou, Fujian, China. With an academic career that spans over a decade, she has demonstrated excellence in teaching, research, and academic leadership. In her current role, she teaches advanced mathematics and computational theory courses, supervises postgraduate research projects, and actively engages in departmental development. She has led several internal and collaborative research initiatives in granular computing and machine learning, working closely with both academic and industrial partners. Her experience also includes conference presentations, curriculum development, and cross-disciplinary project coordination. She is recognized for her effective mentorship, contributing to the growth of young researchers and promoting high standards in academic inquiry. Through her consistent professional contributions, Dr. Liao has helped elevate her institution’s research standing and continues to serve as a vital resource for the academic community in mathematics and software research.

Research Interest🔎

Dr. Shujiao Liao’s research interests span several pivotal domains in computer science and applied mathematics, with a particular focus on granular computing, data mining, and machine learning. Her work in granular computing explores how knowledge can be structured and processed using information granules, improving the interpretability and efficiency of decision-making systems. In the area of data mining, she investigates algorithms for pattern discovery, classification, and clustering, contributing to improved data-driven strategies in scientific and industrial applications. Her interests in machine learning include developing intelligent models capable of adaptive learning and robust performance across complex datasets. Dr. Liao’s research bridges theory and application, aiming to solve real-world problems such as intelligent diagnostics, automated reasoning, and big data analysis. Her interdisciplinary focus allows her to work on innovative projects that combine mathematical rigor with computational techniques, positioning her as a contributor to the evolving field of intelligent systems and artificial intelligence.

Award and Honor🏆

While specific awards and honors for Dr. Shujiao Liao were not provided in the given information, her appointment as a full professor reflects recognition of her academic contributions and research leadership. Attaining such a role typically involves competitive peer-reviewed evaluations, consistent scholarly output, and excellence in teaching and mentorship. It is likely that she has received internal university-level commendations, research project funding awards, or participation in prestigious academic panels, common among professors of her standing. If available, details such as Best Paper Awards, Research Excellence Awards, or National Science Grants would further highlight her academic acclaim. Her long-standing role in the academic community and sustained focus on impactful research suggest she is a strong candidate for further honors at national or international levels. Formal acknowledgment through such accolades would complement her already impressive academic and research credentials, reinforcing her eligibility for broader recognitions such as the Best Researcher Award.

Research Skill🔬

Dr. Shujiao Liao possesses a robust set of research skills grounded in both theoretical understanding and practical application. She demonstrates strong expertise in mathematical modeling, algorithm development, and data analysis, which are essential for her work in granular computing and data mining. Her proficiency in applying machine learning techniques to complex datasets enables her to design predictive models with real-world relevance. She is adept at academic writing, literature review, and hypothesis-driven exploration, essential for high-quality publications and grant writing. Additionally, Dr. Liao has strong collaborative and project management skills, allowing her to lead interdisciplinary research teams and coordinate joint research initiatives. Her experience in supervising graduate theses further reflects her ability to guide rigorous research methodologies. She is also likely skilled in programming languages and tools used in data science, such as Python, MATLAB, or R, further supporting her contributions to computational research domains.

Conclusion💡

Dr. Shujiao Liao is a strong candidate for the Best Researcher Award, particularly within fields like granular computing and machine learning. Her academic background and full professorship position suggest a high level of expertise and leadership. To solidify her candidacy for top-tier recognition, showcasing quantifiable research outcomes, international influence, and broader impact will be important.

Publications Top Noted✍

  • Title: WrdaGAN: A text-to-image synthesis pipeline based on Wavelet Representation and Adaptive Sample Domain Constraint strategy
    Authors: Yongchao Qiao, Ya’nan Guan, Shujiao Liao, Wenyuan Yang, Weiping Ding, Lin Ouyang
    Year: 2025
    Citation: DOI: 10.1016/j.engappai.2025.111305

  • Title: Semisupervised Feature Selection With Multiscale Fuzzy Information Fusion: From Both Global and Local Perspectives
    Authors: Nan Zhou, Shujiao Liao, Hongmei Chen, Weiping Ding, Yaqian Lu
    Year: 2025
    Citation: DOI: 10.1109/TFUZZ.2025.3540884

  • Title: S-approximation spaces extension model based on item-polytomous perspective
    Authors: Xiaojie Xie, Shujiao Liao, Jinjin Li
    Year: 2024
    Citation: DOI: 10.21203/rs.3.rs-4447331/v1

  • Title: Multi-Target Rough Sets and Their Approximation Computation with Dynamic Target Sets
    Authors: Wenbin Zheng, Jinjin Li, Shujiao Liao
    Year: 2022
    Citation: DOI: 10.3390/info13080385

  • Title: Multi-Label Attribute Reduction Based on Neighborhood Multi-Target Rough Sets
    Authors: Wenbin Zheng, Jinjin Li, Shujiao Liao, Yidong Lin
    Year: 2022
    Citation: DOI: 10.3390/sym14081652

  • Title: Attribute‐scale selection for hybrid data with test cost constraint: The approach and uncertainty measures
    Authors: Shujiao Liao, Yidong Lin, Jinjin Li, Huiling Li, Yuhua Qian
    Year: 2022
    Citation: DOI: 10.1002/int.22678

  • Title: Feature–granularity selection with variable costs for hybrid data
    Authors: Shujiao Liao, Qingxin Zhu, Yuhua Qian
    Year: 2019
    Citation: DOI: 10.1007/s00500-019-03854-2

Dr. Na Yi | Deep Metric Learning | Best Researcher Award

Dr. Na Yi | Deep Metric Learning | Best Researcher Award

Doctorate at Heilongjiang University of Science and Technology, China

Profiles

Scopus

Orcid

Academic Background

Dr. Na Yi, born in June 1997 in Acheng, Harbin, is an Associate Professor and a committed member of the Communist Party of China. With a strong academic foundation in Electrical Engineering and Automation, she has quickly risen as a prominent figure in the field of Petroleum and Natural Gas Engineering.

Education

Dr. Na Yi graduated with a degree in Electrical Engineering and Automation from Northeast Petroleum University in 2019. She was subsequently recommended for a doctoral program in Petroleum and Natural Gas Engineering, during which she also studied at Southeast University, earning her doctorate in 2024.

Professional Experience

Throughout her career, Dr. Na Yi has published over 20 research papers in esteemed journals, with 10 SCI-indexed and 5 EI-indexed papers, including highly cited and hot papers. She holds 6 national patents and has participated in 5 significant scientific research projects. Her achievements have earned her more than 10 national and provincial awards.

Research Interests

Dr. Na Yi’s research interests lie in Petroleum Engineering, with a focus on sustainable energy, power systems, and technological innovation. She is an active reviewer for multiple international and Chinese academic journals and has been invited to present her research at several international and domestic conferences.

 Publications

A multi-stage low-cost false data injection attack method for power CPS

  • Authors: Yi, N., Xu, J., Chen, Y., Pan, F.
  • Journal: Zhejiang Electric Power
  • Year: 2023
A New Distributed Power Supply for Distribution Network Considering SOP Access
  • Authors: Peng, C., Xu, J., Zhao, S., Yi, N.
  • Year: 2023
Multi-stage coordinated cyber-physical topology attack method based on deep reinforcement learning
  • Authors: Yi, N., Xu, J., Chen, Y., Sun, D.
  • Journal: Electric Power Engineering Technology
  • Year: 2023
A multi-stage game model for the false data injection attack from attacker’s perspective
  • Authors: Yi, N., Wang, Q., Yan, L., Tang, Y., Xu, J.
  • Journal: Sustainable Energy, Grids and Networks
  • Year: 2021
Insulator Self-Explosion Defect Detection Based on Hierarchical Multi-Task Deep Learning
  • Authors: Xu, J., Huang, L., Yan, L., Yi, N.
  • Journal: Diangong Jishu Xuebao/Transactions of China Electrotechnical Society
  • Year: 2021

Ms. Mina Gachloo | Machine Learning | Best Researcher Award

Ms. Mina Gachloo | Machine Learning | Best Researcher Award

Mina Gachloo at university of North Carolina Wilmington, United States

Profiles

Scopus

Orcid

Google Scholar

Education:

Ms. Mina Gachloo is set to graduate with a Master's degree in Computer Science and Information Systems from the University of North Carolina Wilmington in December 2024, boasting a GPA of 3.8. Her research at UNCW, under the guidance of Dr. Yang Song, focuses on "Temporal Prediction of Coastal Water Quality Based on Environmental Factors with Deep Learning." Mina also holds a Bioinformatics Engineering degree from Huazhong Agricultural University in Wuhan, China, where she researched "Embedding of Cancer-Centric Entities and Knowledge Discovery." Additionally, she earned a B.Sc. in Information Technology from the University of Applied Science and Technology in Tehran, and an Associate’s degree in Information and Communication Technology from the University of Culture and Art in Tehran.

Professional Experience:

Ms. Mina has a diverse range of professional experiences. In 2023, she interned as a Data Analyst and Researcher at the UNCW Institutional Research Office, focusing on predicting the time-to-graduate for undergraduate students. As a Teaching and Research Assistant at UNCW, she conducted data cleaning, feature engineering, and implemented machine learning and deep learning models for predictive analysis. Prior to this, she worked as a Commercial Expert at Bam Khodro Company in Tehran, using SQL, Excel, and Python for data extraction, analysis, and report automation. Mina also served as a Financial Expert at Mellat Leasing Bank, facilitating loans and generating customer reports. Her career began in IT at KICCC in Tehran, specializing in Point of Sale devices and Business Intelligence.

Research Interest:

Ms. Mina's research interests include machine learning, deep learning, structure learning, data analysis, natural language processing, and computer vision. She has actively contributed to several projects, such as the construction of the Active Gene Annotation Corpus (AGAC) and the prediction of dissolved oxygen and salinity levels in the Neuse River Estuary using deep learning techniques.

Honors and Awards:

Ms. Mina's academic excellence has been recognized with multiple awards, including the Summer Research Stipend, Support for Undergraduate Research and Creativity Awards (SURCA), and CMS summer stipend at UNCW. She also received scholarships for her M.Sc. in Computer Science and Bioinformatics at Huazhong Agricultural University.

💡 Skills:

Ms. Mina is proficient in data preprocessing, machine learning, deep learning, natural language processing, and programming in Python and Java. She is skilled in using tools like Jupyter Notebook, Google Colab, Pycharm, IDLE, Microsoft Office, Pegasus, SQL, and Oracle.

 Publications:

Using Machine Learning Models for Short-Term Prediction of Dissolved Oxygen in a Microtidal Estuary
  • Authors: Mina Gachloo, Qianqian Liu, Yang Song, Guozhi Wang, Shuhao Zhang, Nathan Hall
  • Year: 2024
An overview of the active gene annotation corpus and the BioNLP OST 2019 AGAC track tasks
  • Authors: Yuxing Wang, Kaiyin Zhou, Mina Gachloo, Jingbo Xia
  • Year: 2019
A review of drug knowledge discovery using BioNLP and tensor or matrix decomposition
  • Authors: Mina Gachloo, Yuxing Wang, Jingbo Xia
  • Year: 2019
GOF/LOF knowledge inference with tensor decomposition in support of high order link discovery for gene, mutation and disease
  • Authors: Kai Yin Zhou, Yu Xing Wang, Sheng Zhang, Mina Gachloo, Jin Dong Kim, Qi Luo, Kevin Bretonnel Cohen, Jing Bo Xia
  • Year: 2019
An active gene annotation corpus and its application on anti-epilepsy drug discovery
  • Authors: Yuxing Wang, Kaiyin Zhou, Jin-Dong Kim, Kevin B Cohen, Mina Gachloo, Yuxin Ren, Shanghui Nie, Xuan Qin, Panzhong Lu, Jingbo Xia
  • Year: 2019

Mr. Nikolaos Argirusis | Machine Learning | Industry Impact Award

Mr. Nikolaos Argirusis, Machine Learning, Industry Impact Award

Nikolaos Argirusis at mat4nrg GmbH, Germany

Profiles

Scopus

Orcid

🎓Education:

Mr. Nikolaos Argirusis pursued his education at Ostfalia University of Applied Sciences, specializing in Energy Systems and Environmental Engineering, achieving a “Very Good” rating in his Master’s degree. Previously, he completed his Bachelor’s in Electrical and Information Technology at Ostfalia University, with a focus on Electromobility and Energy Technology. He also holds a Bachelor’s degree in Electrical Engineering from Technische Universität Braunschweig, specializing in Energy Technology.

💼 Work Experience:

Currently, Nikolaos serves as a Student Assistant at CZM – TU Clausthal, where he contributes to electronics development and plasma technology experiments. He also engages in a research project for mat4nrg GmbH, focusing on prototype development and project organization. As the Co-founder and Managing Director of mat4nrg GmbH, he oversees the management, supervision, and development of research and customer projects. Additionally, Nikolaos supports his family’s business, aeras GmbH, focusing on power electronics assembly.

🌐 Skills and Languages:

He possesses advanced skills in Microsoft Office, PSpice, and LTspice, with foundational knowledge in C++ and Java programming languages. Fluent in German and Greek, Nikolaos also communicates proficiently in English.

🎯 Interests:

Outside of academics and professional endeavors, Nikolaos enjoys swimming, team sports, and engaging in DIY projects, reflecting his diverse interests and active lifestyle.

📖 Publications:

Evaluation of the effectiveness and performance of environmental impact assessment studies in Greece
  • Authors:Papamichael, I., Tsiolaki, F., Stylianou, M., Argirusis, C., Zorpas, A.A.
  • Journal:Comptes Rendus Chimie
  • Year: 2023
End-of-Life Management and Recycling on PV Solar Energy Production
  • Authors:Papamichael, I., Voukkali, I., Jeguirim, M., Argirusis, C., Zorpas, A.A.
  • Journal: Energies
  • Year: 2022
Research Progress in Metal-Organic Framework Based Nanomaterials Applied in Battery Cathodes
  • Authors: Mechili, M., Vaitsis, C., Argirusis, N., Zorpas, A.A., Argirusis, C.
  • Journal: Energies
  • Year: 2022
Research progress in transition metal oxide based bifunctional electrocatalysts for aqueous electrically rechargeable zinc-air batteries
  • Authors: Mechili, M., Vaitsis, C., Argirusis, N., Sourkouni, G., Argirusis, C.
  • Journal: Renewable and Sustainable Energy Reviews
  • Year: 2022
MOF nanomaterials for battery cathodes
  • Authors: Vaitsis, C., Mechili, M., Pandis, P.K., Argirusis, N., Sourkouni, G.
  • Year: 2022