Yu Zhou | Medical Image Analysis | Best Researcher Award

Dr. Yu Zhou | Medical Image Analysis | Best Researcher Award

Lecturer | Henan University of Science and Technology | China

Dr. Yu Zhou is an emerging researcher in the intersecting domains of medical imaging, neuroscience, and artificial intelligence, recognized for advancing computational approaches that improve the understanding and diagnosis of neurological disorders. With 10 published research documents, 98 citations, an h-index of 7, and an i10-index of 6, his scholarly contributions reflect both productivity and growing international influence. His research has led to notable advancements in diffusion MRI analysis, white-matter connectivity modeling, and machine-learning-driven diagnostic frameworks, particularly within mild cognitive impairment (MCI), juvenile myoclonic epilepsy (JME), and neurobehavioral disorders.Yu Zhou’s most cited works demonstrate strong expertise in fiber-specific white matter analysis, CNN-based transfer learning, and automated classification systems, with contributions published in respected venues such as Cerebral Cortex, Frontiers in Aging Neuroscience, Frontiers in Neuroscience, and Journal of Neural Engineering. His research extends beyond human neuroscience to impactful cross-disciplinary applications, including AI-driven acoustic-based detection systems for livestock estrus identification, showcasing versatility and methodological depth.He has served as principal investigator for two provincial projects, participated in four additional provincial projects and one national project, and contributed to one consultancy/industry initiative, indicating growing leadership in funded research. His innovative capabilities are further evidenced by one granted patent and four patents under review, underscoring his commitment to translational and societally relevant technological development. With collaborations established across computational neuroscience and AI imaging research groups, he continues to contribute to global scientific networks.Yu Zhou’s ongoing work focuses on building interpretable deep-learning models, advancing multimodal data fusion for clinical diagnostics, and developing AI-assisted neuroimaging biomarkers for early disease identification. These contributions hold significant promise for clinical decision support, early-stage neurological assessment, and precision medicine applications. With increasing publication momentum and expanding collaborative research engagements, he is positioned to generate deeper scientific impact and contribute to the evolution of intelligent medical imaging and computational neuroscience.

Profiles:  Googlescholar | ResearchGate

Featured Publications

1.Zhou, Y., Si, X., Chen, Y., Chao, Y., Lin, C. P., Li, S., Zhang, X., Ming, D., & Li, Q. (2022). Hippocampus- and thalamus-related fiber-specific white matter reductions in mild cognitive impairment. Cerebral Cortex, 32(15), 3159–3174. Cited By : 23

2.Si, X., Zhang, X., Zhou, Y., Sun, Y., Jin, W., Yin, S., Zhao, X., Li, Q., & Ming, D. (2020). Automated detection of juvenile myoclonic epilepsy using CNN-based transfer learning in diffusion MRI. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE. Cited By : 18

3.Zhou, Y., Si, X., Chao, Y. P., Chen, Y., Lin, C. P., Li, S., Zhang, X., Sun, Y., & Ming, D. (2022). Automated classification of mild cognitive impairment by machine learning with hippocampus-related white matter network. Frontiers in Aging Neuroscience, 14, 866230.Cited By : 13

4.Wang, J., Si, Y., Wang, J., Li, X., Zhao, K., Liu, B., & Zhou, Y. (2023). Discrimination strategy using machine learning technique for oestrus detection in dairy cows by a dual-channel-based acoustic tag. Computers and Electronics in Agriculture, 210, 107949.Cited By : 13

5.Wang, J., Chen, H., Wang, J., Zhao, K., Li, X., Liu, B., & Zhou, Y. (2023). Identification of oestrus cows based on vocalisation characteristics and machine learning technique using a dual-channel-equipped acoustic tag. animal, 17(6), 100811.Cited By : 12

Dr. Yu Zhou’s work advances global healthcare innovation by integrating medical imaging, neuroscience, and artificial intelligence to enable earlier, more accurate detection of neurological disorders. His research drives the development of interpretable, data-driven diagnostic tools that strengthen clinical decision-making and support precision medicine. Through cross-disciplinary innovation, he envisions AI-empowered neuroimaging solutions that improve patient outcomes and transform future healthcare systems.

Nagaraj | Deep Learning for Computer Vision | Excellence in Research

Dr. P. Nagaraj | Deep Learning for Computer Vision | Excellence in Research

Associate Professor | SRM Institute of Science and Technology  | India 

Dr. P. Nagaraj is an esteemed Associate Professor at the SRM Institute of Science and Technology, Tiruchirappalli, Tamil Nadu, India. With research expertise spanning Artificial Intelligence, Data Science, Data Analytics, Machine Learning, and Recommender Systems, he has made substantial contributions to intelligent computing and healthcare analytics. His innovative work focuses on applying deep learning, fuzzy inference, and explainable AI (XAI) techniques to real-world challenges in medical diagnosis, cybersecurity, and sustainable automation.Dr. Nagaraj has an impressive research portfolio, with over 208 indexed publications, 2,736 citations, and an h-index of 32, reflecting the global relevance and scholarly influence of his work. His notable publications include advancements in diabetes prediction, brain tumor classification, Alzheimer’s disease analysis, and cyberattack detection using AI-driven frameworks. His studies on distributed denial-of-service (DDoS) detection, IoT-based healthcare systems, and intelligent recommendation models have been widely cited and applied across multiple interdisciplinary domains.In recognition of his outstanding research, Dr. Nagaraj has been consecutively listed among the World’s Top 2% Scientists (2023–2025), highlighting his sustained impact in computer science and data-driven innovation. He is also a two-time recipient of the prestigious India AI Fellowship (Ministry of Electronics and Information Technology, MeitY), each worth ₹1 Lakh, for his pioneering projects titled AgriTech of Next-Gen Automation for Sustainable Crop Production and A Deep Learning Approach to Improve Pulmonary Cancer Diagnosis Using CNN.Through collaborations with national and international scholars, Dr. Nagaraj continues to advance the frontier of intelligent data analytics for societal benefit. His research contributes significantly to sustainable digital transformation, healthcare improvement, and agricultural innovation, positioning him as a leading figure in India’s AI research landscape and a global advocate for technology-driven social progress.

Profiles: Google Scholar ORCID  | Scopus

Featured Publications

1.Sudar, K. M., Beulah, M., Deepalakshmi, P., Nagaraj, P., & Chinnasamy, P. (2021). Detection of distributed denial of service attacks in SDN using machine learning techniques. In Proceedings of the 2021 International Conference on Computer Communication and Informatics (ICCCI) (pp. 1–6). IEEE. Cited By : 158

2.Nagaraj, P., & Deepalakshmi, P. (2022). An intelligent fuzzy inference rule‐based expert recommendation system for predictive diabetes diagnosis. International Journal of Imaging Systems and Technology, 32(4), 1373–1396. Cited By : 100

3.Nagaraj, P., Muneeswaran, V., Reddy, L. V., Upendra, P., & Reddy, M. V. V. (2020). Programmed multi-classification of brain tumor images using deep neural network. In Proceedings of the 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 1–6). IEEE. Cited By : 85

4.Nagaraj, P., Deepalakshmi, P., & Romany, F. M. (2021). Artificial flora algorithm-based feature selection with gradient boosted tree model for diabetes classification. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 2789–2802. Cited By : 79

.5.Nagaraj, P., & Deepalakshmi, P. (2020). A framework for e-healthcare management service using recommender system. Electronic Government, an International Journal, 16(1–2), 84–100. Cited By : 70

Dr. P. Nagaraj’s research advances global innovation by integrating artificial intelligence and data analytics to address critical challenges in healthcare, agriculture, and cybersecurity. His vision is to harness intelligent automation and explainable AI to create sustainable, data-driven solutions that enhance human well-being, industrial efficiency, and societal resilience.

Tuğba Özge Onur | Image Reconstruction | Best Researcher Award

Assoc. Prof. Dr. Tuğba Özge Onur | Image Reconstruction | Best Researcher Award

Associate Professor | Zonguldak Bülent Ecevit University | Turkey

Assoc. Prof. Dr. Tuğba Özge Onur is a distinguished researcher specializing in signal processing, image reconstruction, and optimization. She earned her Ph.D. in electrical and electronics engineering from a leading university, where she developed a strong foundation in computational imaging and algorithm design. Her professional experience includes leading research projects, coordinating international collaborations, and mentoring students in both academic and applied research settings. Her research interests span computer vision, optimization techniques, and advanced signal processing methods, with a focus on developing innovative solutions for real-world challenges. She possesses a diverse set of research skills, including algorithm development, data analysis, experimental design, and implementation of complex computational models. She is actively engaged in the scientific community through professional memberships and collaborative initiatives. Her work has been widely recognized and published in reputed journals and conferences, demonstrating both the depth and impact of her contributions. Her commitment to advancing knowledge, mentoring emerging researchers, and participating in collaborative projects underscores her influence in the field. 98 Citations, 23 Documents, 6 h-index.

Profiles: Google Scholar | Scopus | ORCID | ResearchGate

Featured Publications

  1. Onur, T. Ö. (2022). Improved image denoising using wavelet edge detection based on Otsu’s thresholding. Acta Polytechnica Hungarica, 19(2), 79–92.

  2. Onur, Y. A., İmrak, C. E., & Onur, T. Ö. (2017). Investigation on bending over sheave fatigue life determination of rotation resistant steel wire rope. Experimental Techniques, 41(5), 475–482.

  3. Narin, D., & Onur, T. Ö. (2022). The effect of hyperparameters on the classification of lung cancer images using deep learning methods. Erzincan University Journal of Science and Technology, 15(1), 258–268.

  4. Kaya, G. U., & Onur, T. Ö. (2022). Genetic algorithm based image reconstruction applying the digital holography process with the Discrete Orthonormal Stockwell Transform technique for diagnosis of COVID-19. Computers in Biology and Medicine, 148, 105934.

  5. Onur, T. (2021). An application of filtered back projection method for computed tomography images. International Review of Applied Sciences and Engineering, 12(2), 194–200.

Benito Farina | Spatio-Temporal CV | Best Researcher Award

Mr. Benito Farina | Spatio-Temporal CV | Best Researcher Award

Researcher | Universidad Politecnica de Madrid | Spain

Benito Farina is a dedicated researcher in artificial intelligence, machine learning, and biomedical engineering with a strong focus on medical imaging, cancer screening, and predictive modeling. He completed his bachelor’s and master’s degrees in Biomedical Engineering with highest honors at Università degli Studi di Napoli Federico II, where his theses explored machine learning for breast cancer histopathology and deep learning models for lung nodule malignancy detection. He pursued his doctoral studies in Electrical Engineering at Universidad Politécnica de Madrid, graduating with distinction for his research on spatio-temporal image analysis methods to enhance lung cancer screening and therapy response prediction. Professionally, he gained extensive experience as a Junior Research Scientist at Universidad Politécnica de Madrid, where he developed AI-based medical imaging datasets, implemented advanced models including CNNs, RNNs, and transformers, and explored generative models and explainable AI for clinical applications. He later joined the Centro de Investigación Biomédica en Red as a Research Scientist, leading projects in medical image segmentation, classification, and interpretability, managing GPU-based deployments, and contributing to international collaborations and grant proposals. His international exposure includes visiting scientist positions at Harvard University’s Brigham and Women’s Hospital, where he worked on image harmonization techniques to improve consistency in multi-center datasets. His research interests lie in artificial intelligence for healthcare, medical image processing, radiomics, generative models, self-supervised learning, and explainable AI with a vision of translating computational tools into clinical practice. Throughout his career, he has guided undergraduate and master’s students, actively contributed to competitive AI challenges, and engaged in cultural leadership as Vice-President of a community association promoting cultural heritage and development. He has presented his research at reputed conferences, published in indexed journals, and continues to expand his academic contributions through collaborative projects. His research skills include proficiency in Python, R, MATLAB, TensorFlow, PyTorch, and Keras, expertise in GPU cluster computing, dataset development, model deployment with Docker, and technical documentation with LaTeX. Fluent in Italian, Spanish, and English, he thrives in multicultural academic environments and has demonstrated both technical excellence and leadership capabilities. Benito has earned academic distinctions for his outstanding performance in higher education and doctoral research, reflecting his commitment to excellence. With strong foundations in artificial intelligence and biomedical engineering, he aspires to drive advancements in precision medicine, foster global collaborations, and translate AI innovations into impactful healthcare solutions.

Profile: Google Scholar | Scopus Profile | ORCID Profile

Featured Publications

Farina, B., Guerra, A. D. R., Bermejo-Peláez, D., Miras, C. P., Peral, A. A., & others. (2023). Integration of longitudinal deep-radiomics and clinical data improves the prediction of durable benefits to anti-PD-1/PD-L1 immunotherapy in advanced NSCLC patients. Journal of Translational Medicine, 21(1), 174.

Farina, B., Guerra, A. D. R., Miras, C. P., Madueño, G. G., Muñoz-Barrutia, A., & others. (2021). Delta-radiomics signature for prediction of survival in advanced NSCLC patients treated with immunotherapy. In 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI) (pp. 886–890). IEEE.

Farina, B., Benito, R. C., Montalvo-García, D., Bermejo-Peláez, D., Maceiras, L. S., & others. (2025). Spatio-temporal deep learning with temporal attention for indeterminate lung nodule classification. Computers in Biology and Medicine, 196, 110813.

Ramos-Guerra, A. D., Farina, B., Rubio Pérez, J., Vilalta-Lacarra, A., & others. (2025). Monitoring peripheral blood data supports the prediction of immunotherapy response in advanced non-small cell lung cancer based on real-world data. Cancer Immunology, Immunotherapy, 74(4), 120.

Seijo, L., Bermejo-Peláez, D., Gil-Bazo, I., Farina, B., Domine, M., & others. (2023). Integration of longitudinal deep-radiomics and clinical data improves the prediction of durable benefits to anti-PD-1/PD-L1 immunotherapy in advanced NSCLC patients. Journal of Translational Medicine, 21(1), 174.

Bolaños, M. C., Farina, B., Guerra, A. D. R., Miras, C. P., Madueño, G. G., & others. (2020). Design and implementation of predictive models based on radiomics to assess response to immunotherapy in non-small-cell lung cancer. In XXXVIII Congreso Anual de la Sociedad Española de Ingeniería Biomédica.