Mikhail Zuev | Industrial and Manufacturing Applications | Best Researcher Award

Prof . Mikhail Zuev | Industrial and Manufacturing Applications | Best Researcher Award

Chief researcher at Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences, Russia

The candidate is a distinguished researcher and professor with a doctorate in chemistry, specializing in solid-state and inorganic chemistry. He currently serves as Chief Researcher of the Oxidation Systems Department at the Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, and as Professor at the Department of Physical and Colloidal Chemistry, Ural Federal University. He has significantly contributed to the synthesis and study of complex oxide systems, including the development of new ternary and quaternary compounds. His innovative research extends to the creation of a new scientific field—solid-state medical chemistry—leading to the development of radiopaque substances for medical use. He has published over 170 scientific papers, authored nine monographs, and holds 33 Russian patents. His pioneering work in nanophosphors and magnetic field effects on photoluminescence demonstrates strong interdisciplinary expertise. Overall, his prolific career showcases a blend of theoretical excellence and applied innovation in material science.

Professional Profile 

Education🎓

The candidate obtained his doctoral degree in Chemistry with a focus on solid-state and physical chemistry. He completed his undergraduate and graduate studies at the Ural Polytechnic Institute named after S.M. Kirov, under the Faculty of Physics and Technology, a highly regarded institution in Russia. His academic training provided him with a deep foundation in the synthesis and characterization of inorganic and oxide materials, equipping him to pursue advanced research in physical and inorganic chemistry. Throughout his education, he developed a strong command of crystallography, spectroscopic techniques, and reaction mechanisms involved in solid-state processes. His formal education was marked by rigorous coursework and research that emphasized the principles of thermodynamics, kinetics, and material structure-property relationships. His transition from student to research scientist was grounded in this academic rigor, paving the way for his influential career as a leading researcher and professor in both scientific and interdisciplinary areas of chemistry.

Professional Experience📝

The candidate has built a robust professional career rooted in academic excellence and high-impact research. He holds the dual role of Chief Researcher at the Oxidation Systems Department of the Institute of Solid State Chemistry (Ural Branch of the Russian Academy of Sciences) and Professor at the Department of Physical and Colloidal Chemistry at Ural Federal University. His professional journey began shortly after completing his doctorate, evolving through years of hands-on experimental work, research leadership, and academic instruction. As a chief researcher, he has led numerous projects related to the synthesis and study of complex oxides, developing novel materials for various scientific and medical applications. As a professor, he has mentored graduate students, supervised theses, and designed advanced courses in solid-state and physical chemistry. His professional experience reflects a well-balanced career between fundamental research, innovation, academic mentorship, and contributions to scientific communities at both national and institutional levels.

Research Interest🔎

The candidate’s research interests lie primarily in the domains of solid-state chemistry, physical and inorganic chemistry, and the synthesis of advanced materials. He has focused extensively on the investigation of multi-component oxide systems involving elements from groups 3 and 5 of the periodic table, successfully modeling phase formation and studying the physicochemical properties of novel compounds. His research also explores the spectral behavior of nanosized phosphors, particularly those produced through pulsed electron beam evaporation—a unique and high-precision method. One of his major contributions includes the development of blue and white nanoamorphous phosphors and identifying how photoluminescence spectra shift in magnetic fields. Furthermore, his interest in applied science led to the creation of a new interdisciplinary field—solid-state medical chemistry—where he developed radiopaque compounds for diagnostic medicine. Overall, his research combines theoretical insights, advanced synthesis methods, and practical applications in material science, nanotechnology, and biomedical chemistry.

Award and Honor🏆

Throughout his career, the candidate has garnered numerous accolades that reflect his excellence in research, innovation, and scientific advancement. He holds 33 Russian patents, a testament to his original contributions to material synthesis and applied chemistry. His work has been widely recognized through the publication of over 170 research articles in reputed scientific journals, along with nine monographs that have contributed significantly to academic literature. While specific named awards or national/international recognitions were not explicitly mentioned, his appointment as Chief Researcher and Professor at prestigious institutions highlights the high regard in which he is held within the academic and research community. His innovative development of radiopaque substances and nanoscale phosphors further suggests his work may have practical and commercial value, potentially recognized through institutional or governmental channels. These accomplishments collectively underscore a career marked by scientific leadership, invention, and dedication to advancing the frontiers of chemistry.

Research Skill🔬

The candidate possesses an extensive array of research skills spanning both experimental and theoretical domains. He has expertise in the synthesis of complex oxide materials, including ternary and quaternary systems, using advanced solid-state and physicochemical methods. His proficiency in spectroscopy, crystallography, and phase modeling enables him to characterize and analyze the structural and optical properties of newly synthesized materials with precision. He is skilled in nanomaterial fabrication, particularly using pulsed electron beam evaporation, and has investigated magnetic field effects on photoluminescence—demonstrating deep technical acumen in nano-optical systems. He also pioneered a new area called solid-state medical chemistry, applying his skills to develop radiopaque materials with medical imaging applications. Furthermore, his ability to translate research into patents and monographs shows excellent documentation and innovation management skills. His multidisciplinary skill set bridges chemistry, materials science, and applied medical research, making him an asset in both academic and industrial research settings.

Conclusion💡

The candidate is highly suitable for the Best Researcher Award due to his exceptional contributions in solid state chemistry, material science innovation, and the creation of a new research discipline. His work bridges fundamental research and applied medical science, demonstrating both intellectual leadership and practical relevance. To further strengthen his candidacy on a global scale, increased international visibility and recent impact metrics could be beneficial. Nonetheless, his academic and inventive excellence makes him a worthy and commendable nominee for the award.

Publications Top Noted✍

  • Title: Influence of annealing on the physicochemical properties of 2L ferrihydrite synthesized by radiation-chemical method from iron (III) nitrate
    Year: 2024
    Citations: 0

  • Title: Threshold phenomena in photoluminescence of upconversion micro- and nanophosphors containing Er³⁺ and Yb³⁺ ions
    Authors: M.G. Zuev, V.G. Il’ves, S.Yu. Sokovnin, A.A. Vasin, E.Yu. Zhuravleva
    Year: 2024
    Citations: 0

  • Title: Effect of permanent magnetic field on photoluminescence of barium and calcium nanofluorides
    Authors: S.Yu. Sokovnin, V.G. Il’ves, M.G. Zuev
    Year: 2024
    Citations: 1

  • Title: Effect of air annealing on structural, textural, thermal, magnetic and photocatalytic properties of Ag-doped mesoporous amorphous crystalline nanopowders Bi₂O₃
    Authors: V.G. Ilves, V.S. Gaviko, A.M. Murzakaev, S.Y. Sokovnin, O.A. Svetlova, M.G. Zuev, M.A. Uimin
    Year: 2024
    Citations: 0

  • Title: Luminescent manifestations of ytterbium ions in the crystal structure of silicate apatite
    Year: 2024
    Citations: 1

  • Title: Synthesis, Structure, and Luminescence Properties of Anion-Substituted Germanates Ca₂La₇.₂Eu₀.₈(GeO₄)₆−ₓ(PO₄)ₓO₂+ₓ⁄₂ with an Apatite-Type Structure
    Year: 2024

  • Title: Radiation-chemical synthesis and characterization of ferrihydrite from iron (III) nitrate
    Authors: [Not fully listed]
    Year: 2024
    Citations: 2

  • Title: Properties of an amorphous crystalline nanopowder Si–SiO₂ produced by pulsed electron beam evaporation
    Authors: V.G. Ilves, M.G. Zuev, A.A. Vasin, P.M. Korusenko, S.Yu. Sokovnin, M.V. Ulitko, A.S. Gerasimov
    Year: 2024
    Citations: 4