Mr. Benito Farina | Spatio-Temporal CV | Best Researcher Award
Researcher | Universidad Politecnica de Madrid | Spain
Benito Farina is a dedicated researcher in artificial intelligence, machine learning, and biomedical engineering with a strong focus on medical imaging, cancer screening, and predictive modeling. He completed his bachelor’s and master’s degrees in Biomedical Engineering with highest honors at Università degli Studi di Napoli Federico II, where his theses explored machine learning for breast cancer histopathology and deep learning models for lung nodule malignancy detection. He pursued his doctoral studies in Electrical Engineering at Universidad Politécnica de Madrid, graduating with distinction for his research on spatio-temporal image analysis methods to enhance lung cancer screening and therapy response prediction. Professionally, he gained extensive experience as a Junior Research Scientist at Universidad Politécnica de Madrid, where he developed AI-based medical imaging datasets, implemented advanced models including CNNs, RNNs, and transformers, and explored generative models and explainable AI for clinical applications. He later joined the Centro de Investigación Biomédica en Red as a Research Scientist, leading projects in medical image segmentation, classification, and interpretability, managing GPU-based deployments, and contributing to international collaborations and grant proposals. His international exposure includes visiting scientist positions at Harvard University’s Brigham and Women’s Hospital, where he worked on image harmonization techniques to improve consistency in multi-center datasets. His research interests lie in artificial intelligence for healthcare, medical image processing, radiomics, generative models, self-supervised learning, and explainable AI with a vision of translating computational tools into clinical practice. Throughout his career, he has guided undergraduate and master’s students, actively contributed to competitive AI challenges, and engaged in cultural leadership as Vice-President of a community association promoting cultural heritage and development. He has presented his research at reputed conferences, published in indexed journals, and continues to expand his academic contributions through collaborative projects. His research skills include proficiency in Python, R, MATLAB, TensorFlow, PyTorch, and Keras, expertise in GPU cluster computing, dataset development, model deployment with Docker, and technical documentation with LaTeX. Fluent in Italian, Spanish, and English, he thrives in multicultural academic environments and has demonstrated both technical excellence and leadership capabilities. Benito has earned academic distinctions for his outstanding performance in higher education and doctoral research, reflecting his commitment to excellence. With strong foundations in artificial intelligence and biomedical engineering, he aspires to drive advancements in precision medicine, foster global collaborations, and translate AI innovations into impactful healthcare solutions.
Profile: Google Scholar | Scopus Profile | ORCID Profile
Featured Publications
Farina, B., Guerra, A. D. R., Bermejo-Peláez, D., Miras, C. P., Peral, A. A., & others. (2023). Integration of longitudinal deep-radiomics and clinical data improves the prediction of durable benefits to anti-PD-1/PD-L1 immunotherapy in advanced NSCLC patients. Journal of Translational Medicine, 21(1), 174.
Farina, B., Guerra, A. D. R., Miras, C. P., Madueño, G. G., Muñoz-Barrutia, A., & others. (2021). Delta-radiomics signature for prediction of survival in advanced NSCLC patients treated with immunotherapy. In 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI) (pp. 886–890). IEEE.
Farina, B., Benito, R. C., Montalvo-García, D., Bermejo-Peláez, D., Maceiras, L. S., & others. (2025). Spatio-temporal deep learning with temporal attention for indeterminate lung nodule classification. Computers in Biology and Medicine, 196, 110813.
Ramos-Guerra, A. D., Farina, B., Rubio Pérez, J., Vilalta-Lacarra, A., & others. (2025). Monitoring peripheral blood data supports the prediction of immunotherapy response in advanced non-small cell lung cancer based on real-world data. Cancer Immunology, Immunotherapy, 74(4), 120.
Seijo, L., Bermejo-Peláez, D., Gil-Bazo, I., Farina, B., Domine, M., & others. (2023). Integration of longitudinal deep-radiomics and clinical data improves the prediction of durable benefits to anti-PD-1/PD-L1 immunotherapy in advanced NSCLC patients. Journal of Translational Medicine, 21(1), 174.
Bolaños, M. C., Farina, B., Guerra, A. D. R., Miras, C. P., Madueño, G. G., & others. (2020). Design and implementation of predictive models based on radiomics to assess response to immunotherapy in non-small-cell lung cancer. In XXXVIII Congreso Anual de la Sociedad Española de Ingeniería Biomédica.