Xinrong Hu | Object Detection and Recognition | Women Researcher Award

Prof. Xinrong Hu | Object Detection and Recognition | Women Researcher Award

Dean of Computer Science and Artificial Intelligence | Wuhan Textile University | China

Prof. Xinrong Hu is a distinguished researcher and academic leader in computer vision, natural language processing, virtual reality, and machine learning. She serves as Dean of the School of Computer and Artificial Intelligence at Wuhan Textile University and is a doctoral supervisor, leading an innovative research team at the Hubei Provincial Engineering Technology Research Center for Garment Informatization. She holds a Ph.D. and has extensive experience in guiding research projects, including over 30 funded initiatives, some with national and international significance. Her research interests focus on advancing artificial intelligence applications in real-world scenarios, combining theoretical innovation with practical solutions. She has authored more than 100 academic papers, edited six textbooks, translated a book, and holds 26 invention patents, demonstrating her strong research skills and contribution to knowledge dissemination. Prof. Hu has been recognized with multiple awards and honors, including provincial and ministerial-level scientific research awards, teaching achievement awards, and prestigious titles such as Hubei Provincial Distinguished Teacher and recipient of the Special Government Allowance from the State Council. Her professional engagement includes leadership in academic communities, mentorship of young researchers, and active participation in advancing the field of AI through both education and research initiatives. Her comprehensive expertise, innovative contributions, and dedication to fostering academic excellence make her a leading figure in her field. Her research impact is reflected in 1,044 citations, 209 documents, and an h-index of 16.

Profiles: Scopus | ResearchGate 

Featured Publications

  1. Hu, X., et al. (2025). CDPMF-DDA: Contrastive deep probabilistic matrix factorization for drug-disease association prediction. BMC Bioinformatics.

  2. Hu, X., et al. (2025). Source-free cross-modality medical image synthesis with diffusion priors. Journal of King Saud University – Computer and Information Sciences.

  3. Hu, X., et al. (2025). TADUFMA: Transformer-based adaptive denoising and unified feature modeling for multi-condition anomaly detection in computerized flat knitting machines. Measurement Science and Technology.

  4. Hu, X., et al. (2025). ViT-BF: Vision transformer with border-aware features for visual tracking. Visual Computer.

  5. Hu, X., et al. (2025). Adaptive debiasing learning for drug repositioning. Journal of Biomedical Informatics.

Fatma Zahra Sayadi | Deep Learning | Best Innovation Award

Prof. Fatma Zahra Sayadi | Deep Learning | Best Innovation Award

Associate Professor | University of Sousse | Tunisia

Fatma Elzahra Sayadi is a highly accomplished researcher and academic specializing in electronics and microelectronics, with current research focused on video surveillance systems, real-time processing, and signal compression. She earned her PhD in electronics for real-time systems from the University of Bretagne Sud in collaboration with the University of Monastir and has also completed her engineering and master’s studies in electrical and electronic systems. She has extensive professional experience as a maître de conférences and previously as a maître assistante and assistant technologist, teaching courses in microprocessors, multiprocessors, programming, circuit testing, and industrial electronics. Her research interests include signal processing, parallel architectures, microelectronics, real-time systems, and communication networks. She has actively participated in national and international research projects and collaborations with institutions in France, Italy, Germany, and Morocco. Her work has been published in over 37 journal articles, 40 conference papers, and six book chapters, and she has supervised several doctoral and master’s theses. She has been recognized with awards such as the first prize at the Women in Research Forum at the University of Sharjah and contributes to professional communities as a reviewer, evaluator, and organizer of academic events. She is skilled in research methodologies, signal and data analysis, electronic system design, and digital education innovation. Her academic contributions have been cited by 395 documents, with 69 documents contributing to her citations, and she has an h-index of 13.

Featured Publications

  1. Basly, H., Ouarda, W., Sayadi, F. E., Ouni, B., & Alimi, A. M. (2020). CNN-SVM learning approach based human activity recognition. In International Conference on Image and Signal Processing (pp. 271–281). 77 citations.

  2. Bouaafia, S., Khemiri, R., Sayadi, F. E., & Atri, M. (2020). Fast CU partition-based machine learning approach for reducing HEVC complexity. Journal of Real-Time Image Processing, 17(1), 185–196. 53 citations.

  3. Haggui, O., Tadonki, C., Lacassagne, L., Sayadi, F., & Ouni, B. (2018). Harris corner detection on a NUMA manycore. Future Generation Computer Systems, 88, 442–452. 48 citations.

  4. Basly, H., Ouarda, W., Sayadi, F. E., Ouni, B., & Alimi, A. M. (2022). DTR-HAR: Deep temporal residual representation for human activity recognition. The Visual Computer, 38(3), 993–1013. 40 citations.

  5. Bouaafia, S., Khemiri, R., Messaoud, S., Ben Ahmed, O., & Sayadi, F. E. (2022). Deep learning-based video quality enhancement for the new versatile video coding. Neural Computing and Applications, 34(17), 14135–14149. 35 citations.