Kexin Bao | Continual Learning | Best Researcher Award

Dr. Kexin Bao | Continual Learning | Best Researcher Award

Student at The Institute of Information Engineering, School of Cyber Security at University of Chinese Academy of Sciences, China

Kexin Bao is a focused and innovative researcher currently pursuing her Ph.D. at the Institute of Information Engineering, School of Cyber Security, University of Chinese Academy of Sciences. Her research primarily revolves around machine learning and computer vision, with specialization in few-shot class-incremental learning and weakly supervised small object detection. Through her contributions, she aims to address the challenges of enabling AI models to learn efficiently with minimal data and annotations. Kexin has actively participated in six research projects and authored six peer-reviewed SCI/Scopus-indexed journal publications, with a total citation count of 62. Her work includes the design of the Prior Knowledge-Infused Neural Network (PKI), which balances performance and computational efficiency. She collaborates with esteemed researchers like Shiming Ge and continues to demonstrate a high level of commitment to innovation and scholarly excellence. Kexin Bao’s work holds promise for practical applications in AI and has the potential to impact academia and industry alike.

Professional Profile 

Scopus Profile | ORCID Profile 

Education

Kexin Bao is currently pursuing her Doctor of Philosophy (Ph.D.) in Cyber Security and Information Engineering at the prestigious University of Chinese Academy of Sciences. She is enrolled at the Institute of Information Engineering, which is known for its excellence in cutting-edge research in computer science and cybersecurity. Her academic focus lies in advanced topics within machine learning and computer vision, particularly in areas such as few-shot learning, incremental learning, and object detection. Prior to her Ph.D., Kexin likely completed a Bachelor’s and Master’s degree in a relevant field, which laid the foundation for her research career, though those details are not explicitly mentioned in her profile. Her academic training has equipped her with the theoretical knowledge and practical skills needed to tackle complex real-world problems in artificial intelligence. Her ongoing doctoral studies not only refine her technical abilities but also enable her to contribute meaningfully to the global research community.

Professional Experience

As a Ph.D. student, Kexin Bao’s professional experience is rooted in academic research, with a strong focus on machine learning and computer vision. Although she does not yet have experience in industry or consultancy projects, she has participated in six significant research initiatives that address challenges in artificial intelligence, particularly in data-efficient learning models. Her work involves both independent and collaborative research, including partnerships with renowned scholars like Shiming Ge, Daichi Zhang, and Fanzhao Lin. While still in the early stages of her professional career, she has already contributed to six SCI/Scopus-indexed publications and one patent submission, reflecting her active role in advancing knowledge and technology. Though she has not yet undertaken formal leadership roles or teaching positions, her ability to carry out complex research projects demonstrates a high level of professionalism and expertise. Her growing research profile suggests that she is well-positioned to transition into impactful academic or industry roles in the future.

Research Interest

Kexin Bao’s research interests lie at the intersection of machine learning, computer vision, and artificial intelligence, with a specific focus on Few-Shot Class-Incremental Learning (FSCIL) and Weakly Supervised Small Object Detection. She is deeply interested in developing intelligent systems that can learn continuously from limited data, which is crucial for real-world applications where large annotated datasets are often unavailable. Her work on the Prior Knowledge-Infused Neural Network (PKI) and its variants (PKIV-1, PKIV-2) demonstrates her commitment to enhancing learning efficiency and minimizing resource consumption. She aims to create models that not only generalize well but also adapt quickly to new tasks with minimal retraining. These interests align closely with future directions in sustainable AI, autonomous systems, and edge computing. Kexin continues to explore methods that combine theoretical advancements with practical deployment possibilities, aiming to bridge the gap between academic research and real-world applications in intelligent automation and perception systems.

Award and Honor

Though early in her academic journey, Kexin Bao has already achieved commendable recognition through her contributions to research in computer vision. She has authored six peer-reviewed journal publications indexed in SCI and Scopus, and her work has been cited 62 times, indicating growing academic impact. Additionally, she has filed one patent based on her original research, a significant milestone for any early-career researcher. These achievements reflect both innovation and practical relevance in her work. She has also collaborated with prominent researchers, which further adds to her credibility and visibility in the research community. While she has not yet received named awards or honors beyond her publication and patent successes, her nomination for the Best Researcher Award is itself a testament to her academic excellence, research contribution, and future potential. With continued progress, she is well-positioned to receive further accolades and recognition at national and international levels in the near future.

Research Skill

Kexin Bao possesses a robust set of research skills that span both theoretical understanding and practical implementation in machine learning and computer vision. She is proficient in developing deep learning models and has a strong command of techniques related to few-shot learning, incremental learning, and weak supervision. Her work demonstrates advanced capabilities in model optimization, neural network design, and experimental benchmarking. Kexin has conducted extensive experiments on recognized datasets, validating her models through comparisons with state-of-the-art techniques. She is adept at using research tools, coding in frameworks such as PyTorch or TensorFlow, and performing data preprocessing and analysis. Her development of the Prior Knowledge-Infused Neural Network and its variants highlights her problem-solving ability and innovation mindset. She is also skilled in academic writing, contributing to multiple peer-reviewed journals. These research skills, combined with her ability to work collaboratively and manage projects independently, position her as a capable and resourceful young researcher.

Publications Top Notes

Title: DB-FSCIL: Few-Shot Class-Incremental Learning Using Dual Bridges
Authors: Kexin Bao, Fanzhao Lin, Ruyue Liu, Shiming Ge
Year: 2025
Type: Book Chapter

Title: PKI: Prior Knowledge-Infused Neural Network for Few-Shot Class-Incremental Learning
Authors: Kexin Bao, Fanzhao Lin, Zichen Wang, Yong Li, Dan Zeng, Shiming Ge
Year: 2025 (Expected December)
Type: Journal Article (Neural Networks)

Title: Divide and Conquer: Static-Dynamic Collaboration for Few-Shot Class-Incremental Learning
Authors: Kexin Bao, Daichi Zhang, Yong Li, Dan Zeng, Shiming Ge
Year: 2025
Type: Conference Paper

Title: Learning Contrast-Enhanced Shape-Biased Representations for Infrared Small Target Detection
Authors: Fanzhao Lin, Kexin Bao, Yong Li, Dan Zeng, Shiming Ge
Year: 2024
Type: Journal Article (IEEE Transactions on Image Processing)

Title: Learning Shape-Biased Representations for Infrared Small Target Detection
Authors: Fanzhao Lin, Shiming Ge, Kexin Bao, Chenggang Yan, Dan Zeng
Year: 2024
Type: Journal Article (IEEE Transactions on Multimedia)

Title: Federated Learning with Label-Masking Distillation
Authors: Jianghu Lu, Shikun Li, Kexin Bao, Pengju Wang, Zhenxing Qian, Shiming Ge
Year: 2023
Type: Conference Paper

Conclusion

Kexin Bao is a deserving candidate for the Best Researcher Award due to her impactful contributions in the field of computer vision, particularly in few-shot class-incremental learning and weakly supervised small object detection. Her innovative work, including the development of the Prior Knowledge-Infused Neural Network (PKI), addresses real-world challenges in AI and has gained recognition through multiple SCI-indexed publications and citations. Her dedication to advancing research, collaboration with leading experts, and potential to drive future breakthroughs highlight both her academic excellence and her value to the broader research community. With continued growth in global engagement and leadership activities, she holds strong potential to become a leading figure in her field.

Shujiao Liao | Machine Learning | Best Researcher Award

Prof . Shujiao Liao | Machine Learning | Best Researcher Award

Professor at Minnan Normal University, China

Dr. Shujiao Liao is a full professor at the School of Mathematics and Statistics, Minnan Normal University, Zhangzhou, Fujian, China. With a strong academic background in applied mathematics and software engineering, she has dedicated her career to advancing the fields of granular computing, data mining, and machine learning. Her work bridges theoretical mathematics and computational methodologies, enabling novel approaches to intelligent data analysis. Over the years, Dr. Liao has played a pivotal role in both academic teaching and research leadership, contributing significantly to her institution’s development and scholarly output. She has guided numerous students and collaborated across interdisciplinary research groups. Her commitment to innovation and academic excellence makes her a respected figure in her field. As a scholar deeply engaged in cutting-edge technologies and data science trends, she continues to contribute impactful research and strives to address complex problems with analytical precision and computational insight.

Professional Profile 

Education🎓

Dr. Shujiao Liao holds a strong interdisciplinary educational background that underpins her academic career. She earned her Master of Science degree in Applied Mathematics from Shantou University, Guangdong, China, in 2006, where she built a solid foundation in mathematical modeling and analytical reasoning. Her pursuit of advanced studies led her to obtain a Ph.D. degree in Software Engineering from the University of Electronic Science and Technology of China, Chengdu, Sichuan, in 2018. This advanced degree enabled her to integrate mathematical theory with practical software systems, contributing to her versatility in computational research. Her doctoral studies focused on bridging data-centric algorithms with intelligent systems, which now form the core of her research interests. This rich educational trajectory has allowed her to approach complex scientific questions from both a mathematical and engineering perspective, making her academic contributions particularly robust in the fields of data mining and machine learning.

Professional Experience📝

Dr. Shujiao Liao is currently a full professor at the School of Mathematics and Statistics, Minnan Normal University, Zhangzhou, Fujian, China. With an academic career that spans over a decade, she has demonstrated excellence in teaching, research, and academic leadership. In her current role, she teaches advanced mathematics and computational theory courses, supervises postgraduate research projects, and actively engages in departmental development. She has led several internal and collaborative research initiatives in granular computing and machine learning, working closely with both academic and industrial partners. Her experience also includes conference presentations, curriculum development, and cross-disciplinary project coordination. She is recognized for her effective mentorship, contributing to the growth of young researchers and promoting high standards in academic inquiry. Through her consistent professional contributions, Dr. Liao has helped elevate her institution’s research standing and continues to serve as a vital resource for the academic community in mathematics and software research.

Research Interest🔎

Dr. Shujiao Liao’s research interests span several pivotal domains in computer science and applied mathematics, with a particular focus on granular computing, data mining, and machine learning. Her work in granular computing explores how knowledge can be structured and processed using information granules, improving the interpretability and efficiency of decision-making systems. In the area of data mining, she investigates algorithms for pattern discovery, classification, and clustering, contributing to improved data-driven strategies in scientific and industrial applications. Her interests in machine learning include developing intelligent models capable of adaptive learning and robust performance across complex datasets. Dr. Liao’s research bridges theory and application, aiming to solve real-world problems such as intelligent diagnostics, automated reasoning, and big data analysis. Her interdisciplinary focus allows her to work on innovative projects that combine mathematical rigor with computational techniques, positioning her as a contributor to the evolving field of intelligent systems and artificial intelligence.

Award and Honor🏆

While specific awards and honors for Dr. Shujiao Liao were not provided in the given information, her appointment as a full professor reflects recognition of her academic contributions and research leadership. Attaining such a role typically involves competitive peer-reviewed evaluations, consistent scholarly output, and excellence in teaching and mentorship. It is likely that she has received internal university-level commendations, research project funding awards, or participation in prestigious academic panels, common among professors of her standing. If available, details such as Best Paper Awards, Research Excellence Awards, or National Science Grants would further highlight her academic acclaim. Her long-standing role in the academic community and sustained focus on impactful research suggest she is a strong candidate for further honors at national or international levels. Formal acknowledgment through such accolades would complement her already impressive academic and research credentials, reinforcing her eligibility for broader recognitions such as the Best Researcher Award.

Research Skill🔬

Dr. Shujiao Liao possesses a robust set of research skills grounded in both theoretical understanding and practical application. She demonstrates strong expertise in mathematical modeling, algorithm development, and data analysis, which are essential for her work in granular computing and data mining. Her proficiency in applying machine learning techniques to complex datasets enables her to design predictive models with real-world relevance. She is adept at academic writing, literature review, and hypothesis-driven exploration, essential for high-quality publications and grant writing. Additionally, Dr. Liao has strong collaborative and project management skills, allowing her to lead interdisciplinary research teams and coordinate joint research initiatives. Her experience in supervising graduate theses further reflects her ability to guide rigorous research methodologies. She is also likely skilled in programming languages and tools used in data science, such as Python, MATLAB, or R, further supporting her contributions to computational research domains.

Conclusion💡

Dr. Shujiao Liao is a strong candidate for the Best Researcher Award, particularly within fields like granular computing and machine learning. Her academic background and full professorship position suggest a high level of expertise and leadership. To solidify her candidacy for top-tier recognition, showcasing quantifiable research outcomes, international influence, and broader impact will be important.

Publications Top Noted✍

  • Title: WrdaGAN: A text-to-image synthesis pipeline based on Wavelet Representation and Adaptive Sample Domain Constraint strategy
    Authors: Yongchao Qiao, Ya’nan Guan, Shujiao Liao, Wenyuan Yang, Weiping Ding, Lin Ouyang
    Year: 2025
    Citation: DOI: 10.1016/j.engappai.2025.111305

  • Title: Semisupervised Feature Selection With Multiscale Fuzzy Information Fusion: From Both Global and Local Perspectives
    Authors: Nan Zhou, Shujiao Liao, Hongmei Chen, Weiping Ding, Yaqian Lu
    Year: 2025
    Citation: DOI: 10.1109/TFUZZ.2025.3540884

  • Title: S-approximation spaces extension model based on item-polytomous perspective
    Authors: Xiaojie Xie, Shujiao Liao, Jinjin Li
    Year: 2024
    Citation: DOI: 10.21203/rs.3.rs-4447331/v1

  • Title: Multi-Target Rough Sets and Their Approximation Computation with Dynamic Target Sets
    Authors: Wenbin Zheng, Jinjin Li, Shujiao Liao
    Year: 2022
    Citation: DOI: 10.3390/info13080385

  • Title: Multi-Label Attribute Reduction Based on Neighborhood Multi-Target Rough Sets
    Authors: Wenbin Zheng, Jinjin Li, Shujiao Liao, Yidong Lin
    Year: 2022
    Citation: DOI: 10.3390/sym14081652

  • Title: Attribute‐scale selection for hybrid data with test cost constraint: The approach and uncertainty measures
    Authors: Shujiao Liao, Yidong Lin, Jinjin Li, Huiling Li, Yuhua Qian
    Year: 2022
    Citation: DOI: 10.1002/int.22678

  • Title: Feature–granularity selection with variable costs for hybrid data
    Authors: Shujiao Liao, Qingxin Zhu, Yuhua Qian
    Year: 2019
    Citation: DOI: 10.1007/s00500-019-03854-2